
Stromberg would use Java

Clean code and pitfalls in Java

Sebastian Oerding

22. Januar 2015

c©Sebastian Oerding



Stromberg would use Java

Scope of today

1. Goals of code

2. Wording

3. Be aware of pitfalls

4. Being punished for violating best practices

5. Generics, Strings and Threads

6. Nevermind the hardware?

c©Sebastian Oerding



Stromberg would use Java

Introduction

c©Sebastian Oerding



Stromberg would use Java

Goals of code

Writing really good code is a demanding task cause it aims at the
following goals:

1. Having the specified / requested functionality

2. Performing well

3. Having / causing the minimum possible cost for the company
considered the whole life cycle of it (the code not the company)

⇒What does follow from these goals?

c©Sebastian Oerding



Stromberg would use Java

Developer requirements

To write good code we must

1. aim at being professionals

2. get some knowledge in areas related to programming (T-shaped)

3. know the own limits and communicate them

c©Sebastian Oerding



Stromberg would use Java

About the code we will see today

Having the small talk done, let’s get to the code

1. Opinion and facts can not be always clearly distinguished

2. JDK 6

3. Focused on specific aspects

4. Should encourage to wonder about aspects not discussing them
to end

5. Some artifical and most examples I have actually seen in
production / delivered code

c©Sebastian Oerding



Stromberg would use Java

Wording is important!

c©Sebastian Oerding



Stromberg would use Java

Rain

/∗∗ Tests i f i t r a i ns . ∗ /
@Test p u b l i c vo id tes tRa in ( ) {

Indus t r ia lManager i t = new SalesPerson ( ) ;
Asser t . asser tTrue ( i t . r a i ns ( ) ) ;

}

⇒ Is this a good test?

c©Sebastian Oerding



Stromberg would use Java

Rain - II

/∗∗ Tests whether i t r a i ns . ∗ /
@Test p u b l i c vo id tes tRa in ( ) {

Indus t r ia lManager i t = new SalesPerson ( ) ;
Asser t . asser tTrue ( i t . r a i ns ( ) ) ;

}

⇒ Better?

c©Sebastian Oerding



Stromberg would use Java

Rain - III

/∗∗ V e r i f i e s t h a t a sales person ra i ns . ∗ /
@Test p u b l i c vo id salesPersonRains ( ) {

Indus t r ia lManager i t = new SalesPerson ( ) ;
Asser t . asser tTrue ( ” Sales person unexpectedly

does not r a i n ! ” , i t . r a i ns ( ) ) ;
}

⇒ Better, might not be perfect.
⇒ Developers should sharpen their awareness for requirements and
how to write them down by reading IEEE 1998:830 or its successor.

c©Sebastian Oerding



Stromberg would use Java

Telling a story - I

Humans like stories. Hence we should take our time to tell a good
story with our code:

...

if (mary.goodNight()) {

john.reads();

for (Tooth t : mary.teeth()) {

t.brush();

}

switchTheLight();

}

...

⇒ Is this a good story?

c©Sebastian Oerding



Stromberg would use Java

Telling a story II

Small changes are sufficient to change the previous example into code
which is really easy to understand:

...

if (mary.goesToBed()) {

father.readsAFairytaleFor(mary);

mary.brushesHerTeeth();

father.turnsTheLightOff(mary.room());

}

...

c©Sebastian Oerding



Stromberg would use Java

Be aware of pitfalls!

c©Sebastian Oerding



Stromberg would use Java

The modulus operator

p u b l i c boolean isOdd ( i n t i ) {
r e t u r n i % 2 == 1;

}

c©Sebastian Oerding



Stromberg would use Java

The modulus operator II

p u b l i c boolean isOdd ( i n t i ) {
r e t u r n i % 2 == 1;

}

⇒ Returns false for all negative odd values.
⇒ Use i % 2 != 0 instead.

c©Sebastian Oerding



Stromberg would use Java

Using numbers

We should define constants in a way easy to read

long MILLIS PER DAY = 24 ∗ 60 ∗ 60 ∗ 1000;
long MICROS PER DAY = 24 ∗ 60 ∗ 60 ∗ 1000 ∗ 1000;
p u b l i c long getFactor ( ) {

r e t u r n MICROS PER DAY / MILLIS PER DAY ;
}

c©Sebastian Oerding



Stromberg would use Java

Using numbers II

We should define constants in a way easy to read - but must take care
of overflows in cases like the shown one

long MILLIS PER DAY = 24 ∗ 60 ∗ 60 ∗ 1000;
long MICROS PER DAY = 24 ∗ 60 ∗ 60 ∗ 1000 ∗ 1000L ;
p u b l i c long getFactor ( ) {

r e t u r n MICROS PER DAY / MILLIS PER DAY ;
}

⇒ All computations internally use int if not told otherwise.
⇒ Use capital ’L’ (at the proper place) to avoid overflows.

c©Sebastian Oerding



Stromberg would use Java

But numbers are simple, are they?

We should define constants in a way easy to read

p u b l i c f i n a l c lass DosEquis {
p u b l i c s t a t i c vo id main ( S t r i n g . . . args ) {

char x = ’X ’ ;
i n t i = 0 ;
System . out . p r i n t ( t r ue ? x : 0 ) ;
System . out . p r i n t ( f a l s e ? i : x ) ;

}
}

⇒What does the program print?

c©Sebastian Oerding



Stromberg would use Java

How many iterations

After the overflow and the suprising cast let us confine to a simple loop

p u b l i c f i n a l c lass Count {
p u b l i c s t a t i c vo id main ( S t r i n g . . . args ) {

f i n a l i n t START = 2000000000;
i n t count = 0 ;
f o r ( f l o a t f = START; f < START + 50; f ++)

count ++;
System . out . p r i n t l n ( count ) ;

}
}

⇒What does the program print?

c©Sebastian Oerding



Stromberg would use Java

Simple comparison

The previous examples had been tricky, now let us do a simple
comparison.

wh i le ( i != i ) {}
whi le ( i != i + 0) {}

⇒ Can we turn these loops into infinite loops?

c©Sebastian Oerding



Stromberg would use Java

Concatenating strings

Let us assume that we provide a convenience method to print highway
names.

p r i v a t e vo id printHighwayName ( Character hChar ,
i n t hNumber , S t r i n g count ry ) {

System . out . p r i n t l n ( hChar + hNumber + count ry ) ;
}

c©Sebastian Oerding



Stromberg would use Java

Concatenating strings

Having our beautiful convenience method the following test gives us
an unexpected result.

@Test p u b l i c vo id printA1De ( ) {
printHighwayName ( ’A ’ , 1 , ”DE ” ) ;
}

⇒ Results in ’66DE’.
⇒ The CHARACTER is unboxed and the string is evaluated from left to
right leading to the addition of ’A’ and ’1’.

c©Sebastian Oerding



Stromberg would use Java

Apply best practices (if appropriate)!

c©Sebastian Oerding



Stromberg would use Java

Punishment for violating best practices

In the boardgame Go players should not make overplays as
the expected result is worse for them compared to a correct
move. In Java there is also a lot of stuff we can do but we
should not as the risks never pay out in the long run.

Similar to this we should expect our code to encounter
situations where the fast hacks cause real problems. This
ranges from problems extending or reusing the code to
bugs that occur especially under heavy load in production
environments and were not spotted by tests.

c©Sebastian Oerding



Stromberg would use Java

Confine to using common idioms

Even simple code can surprise developers if using uncommon idioms.

private void printWelcome() {

byte[] message = {1, 2, 3};

if (false) ;

System.out.println(new String(message));

}

⇒What could cause the message to be surprisingly printed out?

c©Sebastian Oerding



Stromberg would use Java

Deceiving but still surprising at a first glance

We should avoid code which sounds deceivingly simple but does not
behave as expected.

p u b l i c c lass Person {
p r i v a t e S t r i n g fName ;
p r i v a t e S t r i n g lName ;

p u b l i c boolean equals ( Person p ) {
r e t u r n fName . equals ( p . fName ) &&

lName . equals ( p . lName ) ;
}

}

⇒ Assuming setters / constructors to be in place this surprisingly may
result in ’Max Muster’ being unequal to ’Max Muster’. How?

c©Sebastian Oerding



Stromberg would use Java

Be slow to be fast

Never return null for arrays or collections.

p u b l i c L i s t<byte []> renderImages ( Scene scene ) {
i f ( renderProcess == n u l l ) r e t u r n n u l l ;
r e t u r n renderProcess . render ( scene ) ;

}

⇒ Is no or close to no performance gain
⇒ Causes a lot of unnecessary code
⇒ Increases cyclomatic complexity of code calling this method
⇒ Requires an additonal test whereever this code is called
⇒ Makes the calling code more clumsy, more difficult to read and to
perform worse

c©Sebastian Oerding



Stromberg would use Java

Be slow to be fast II

By a simple change all of this hassle vanishes.

p u b l i c L i s t<byte []> renderImages ( Scene scene ) {
r e t u r n renderProcess == n u l l ?

C o l l e c t i o n s .<byte []> emptyL is t :
renderProcess . render ( scene ) ;

}

⇒ Avoids the problems
⇒ No performance loss as the list is instantiated only once
⇒ No performance loss as there is no type cast at runtime

c©Sebastian Oerding



Stromberg would use Java

Be slow to be fast III

It looks like a similar methods can easily be written for arrays:

p r i v a t e s t a t i c f i n a l Object [ ] EMPTY ARRAY = {} ;
p u b l i c <T> T [ ] emptyArray ( ) {

/ / The cast i s safe
r e t u r n (T [ ] ) EMPTY ARRAY;

}

⇒ As zero sized arrays are effectively immutable the cast is safe
⇒ Unfortunately you will get a ClassCastException at runtime if
accessing this array (for example using a for each loop)

c©Sebastian Oerding



Stromberg would use Java

Be slow to be fast IV

Unfortunately the approach from the previous sheet does not work in
any way. However we can fix it:

p u b l i c s t a t i c <T , E extends T> T [ ] emptyArray (
Class<T> theClass , Co l l ec t i on<E> elements ) {
r e t u r n (T [ ] ) Array . newInstance (

theClass , elements == n u l l ? 0 : elements . s ize ( ) ) ;
}

⇒ Unfortunately this instantiates a new array for each invocation but
especially on modern JVMs you should not overestimate the costs of
object instantiation

c©Sebastian Oerding



Stromberg would use Java

Use object orientation

Even with object oriented languages it is easy and error prone to write
procedural code:

p r i v a t e enum Defau l t {A, B, C}
p u b l i c Object map( De fau l t d ) {

swi tch ( d ) {
case A : r e t u r n n u l l ;
case B : r e t u r n n u l l ;
case C : r e t u r n n u l l ;

. . .
}

}

⇒ It is easy to forget to extend this method if the enum is extended.

c©Sebastian Oerding



Stromberg would use Java

Use object orientation - II

We could fix this by having a better enum:

p r i v a t e enum Defau l t {
A{ . . . } , B{ . . . } , C{ . . . } ;
abs t r ac t Object foo ( ) ;

}

p u b l i c Object map( De fau l t d ) {
r e t u r n d . foo ( ) ;

}

⇒ Now anybody extending the enum is enforced to implement foo.

c©Sebastian Oerding



Stromberg would use Java

Fun facts

c©Sebastian Oerding



Stromberg would use Java

String concatenation

Since Java 6 string concatenation is no more close to an antipattern
as it has been before.

p u b l i c vo id snake ( ) {
S t r i n g s = ” s ” ;
f o r ( i n t i = 0 ; i < 128; i ++)

s += s ;
}

⇒What happens if running this code?
⇒ Probably you will have an OutOfMemoryError
⇒ If not getting the error weird stuff will happen due to duplicating the
length of the string in each iteration and strings are internally char[]
(with a length of type int) and the overflow of the length

c©Sebastian Oerding



Stromberg would use Java

Stopping Threads

Having a deeper understanding makes us to avoid some pitfalls.

p u b l i c c lass C implements Runnable {
p r i v a t e boolean stop ;
p u b l i c vo id run ( ) {

whi le ( ! stop ) {}
}

p u b l i c vo id stop ( ) {
stop = t rue ;

}
}

⇒What may happen if running this code in a Thread and concurrently
resetting the flag?

c©Sebastian Oerding



Stromberg would use Java

Stopping Threads - II

I The loop may be (nearly) immediately left.

I The loop may be left after some time.

I The loop may never be left.

Especially the last case may sound surprising but it can happen due to
a legal compiler optimization with the while loop transformed into

i f ( ! s top )
wh i le ( t r ue ) {}

⇒ In general the compiler may reorder instructions.
⇒ Synchronization effectively prevents some compiler optimizations
concerning memory access.

c©Sebastian Oerding



Stromberg would use Java

Generic throws declarations

We should know about the subleteties of generics.

p r i v a t e s t a t i c <T extends Throwable> T rethrow (
Throwable t ) throws T {
throw (T) t ;

}

p u b l i c s t a t i c vo id main ( S t r i n g [ ] args ) {
Throwable t = new IOExcept ion ( ” Hi ” ) ;
PersonTest.<RuntimeException>rethrow ( t ) ;

}

⇒What happens if trying to compile / run this code?

c©Sebastian Oerding



Stromberg would use Java

Should we care about the hardware /
operating system?

c©Sebastian Oerding



Stromberg would use Java

Thoughts about hardware

Even with Java we should know some stuff about operating systems
and hardware.

1. There may be different limits depending on the operating system
(file handles, network sockets, ...)

2. The hardware may also reorder instructions (and most pipelined
architectures will do so)

3. Writing code that causes the branch prediction of pipelined
processors to fail often may drastically slow down the application
/ machine

4. Disabling caching by unecessary synchronization / unecessarily
volatile variables may drastically slow down the application /
machine

c©Sebastian Oerding



Stromberg would use Java
Clean Code Developer
http://www.clean-code-developer.de/

Cormen, Leierson, Rivest, Stein Introduction to algorithms 2009;
ISBN-13: 978-0262533058; MIT Press

Joshua Bloch Effective Java 2008; ISBN-13: 978-0321356680;
Addison-Wesley Longman

Joshua Bloch How to design a good API and why it matters 2007;
http://www.youtube.com/watch?v=aAb7hSCtvGw

Joshua Bloch, Neil Gafter Java Puzzlers 2005; ISBN-13:
978-032133678; Addison-Wesley Longman

Frank Dunkel Projektmanagement 2012; iX 2/2013, S. 96 ff.;
Heise Verlag

Horst Eidenberger Softwarequalität 2012; iX 2/2013, S. 132 ff.;
Heise Verlag

c©Sebastian Oerding

http://www.clean-code-developer.de/
http://www.youtube.com/watch?v=aAb7hSCtvGw


Stromberg would use Java
Goetz, Bloch, Bowbeer, Lea, Holmes, Peierls Java Concurrency in
Practice 2006; ISBN-13: 978-0321349606; Addison-Wesley
Longman

Elisabeth Heinemann Jenseits der Programmierung 2010;
ISBN-13: 978-3446422605; Carl Hanser Verlag GmbH & Co. KG

Kevlin Henney 97 Things Every Programmer Should Know 2010;
ISBN-13: 978-0596809485; O’Reilly & Associates

IEEE, IEEE Recommended Practice for Software Requirements
Specifications; 1998;

ISO/IEC/IEEE, Systems and software engineering – Life cycle
processes –Requirements engineering E-ISBN:
978-0-7381-6591-2, IEC/ISO/IEEE

Angelika Langer, Klaus Kreft Java Core Programmierung 2011;
ISBN-13: 978-3-86802-075-5; entwickler.press

c©Sebastian Oerding



Stromberg would use Java
Robert C. Martin Clean Code 2009; ISBN-13: 978-3826655487;
mitp

Oracle How to Write Doc Comments for the Javadoc Tool
http://www.oracle.com/technetwork/java/javase/

documentation/index-137868.html

Oracle The Java Tutorials
http://docs.oracle.com/javase/tutorial

Andreas Spillner Basiswissen Softwaretest 2012; ISBN-13:
978-3864900242; dpunkt.verlag GmbH

Kathy Sierra, Bert Bates Sun Certified Programmer for Java 6
Study Guide 2008; ISBN-13: 978-0071591065; Mcgraw-Hill
Publ.Comp.

Stefan Tilkov REST und HTTP 2011; ISBN-13: 978-3898647328;
dpunkt.verlag GmbH

c©Sebastian Oerding

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://docs.oracle.com/javase/tutorial


Stromberg would use Java
Kageyama Toshiro Lessons in the fundamentals of Go 1998;
ISBN-13: 978-4906574285; Kiseido Pubn Co

c©Sebastian Oerding


