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Scope of today

1. Goals of code

2. Wording

3. Be aware of pitfalls

4. Being punished for violating best practices

5. Generics, Strings and Threads

6. Nevermind the hardware?
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Introduction
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Goals of code

Writing really good code is a demanding task cause it aims at the
following goals:

1. Having the specified / requested functionality

2. Performing well

3. Having / causing the minimum possible cost for the company
considered the whole life cycle of it (the code not the company)

⇒What does follow from these goals?
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Developer requirements

To write good code we must

1. aim at being professionals

2. get some knowledge in areas related to programming (T-shaped)

3. know the own limits and communicate them
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About the code we will see today

Having the small talk done, let’s get to the code

1. Opinion and facts can not be always clearly distinguished

2. JDK 6

3. Focused on specific aspects

4. Should encourage to wonder about aspects not discussing them
to end

5. Some artifical and most examples I have actually seen in
production / delivered code
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Wording is important!
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Rain

/∗∗ Tests i f i t r a i ns . ∗ /
@Test p u b l i c vo id tes tRa in ( ) {

Indus t r ia lManager i t = new SalesPerson ( ) ;
Asser t . asser tTrue ( i t . r a i ns ( ) ) ;

}

⇒ Is this a good test?
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Rain - II

/∗∗ Tests whether i t r a i ns . ∗ /
@Test p u b l i c vo id tes tRa in ( ) {

Indus t r ia lManager i t = new SalesPerson ( ) ;
Asser t . asser tTrue ( i t . r a i ns ( ) ) ;

}

⇒ Better?
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Rain - III

/∗∗ V e r i f i e s t h a t a sales person ra i ns . ∗ /
@Test p u b l i c vo id salesPersonRains ( ) {

Indus t r ia lManager i t = new SalesPerson ( ) ;
Asser t . asser tTrue ( ” Sales person unexpectedly

does not r a i n ! ” , i t . r a i ns ( ) ) ;
}

⇒ Better, might not be perfect.
⇒ Developers should sharpen their awareness for requirements and
how to write them down by reading IEEE 1998:830 or its successor.
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Telling a story - I

Humans like stories. Hence we should take our time to tell a good
story with our code:

...

if (mary.goodNight()) {

john.reads();

for (Tooth t : mary.teeth()) {

t.brush();

}

switchTheLight();

}

...

⇒ Is this a good story?
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Telling a story II

Small changes are sufficient to change the previous example into code
which is really easy to understand:

...

if (mary.goesToBed()) {

father.readsAFairytaleFor(mary);

mary.brushesHerTeeth();

father.turnsTheLightOff(mary.room());

}

...
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Be aware of pitfalls!
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The modulus operator

p u b l i c boolean isOdd ( i n t i ) {
r e t u r n i % 2 == 1;

}
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The modulus operator II

p u b l i c boolean isOdd ( i n t i ) {
r e t u r n i % 2 == 1;

}

⇒ Returns false for all negative odd values.
⇒ Use i % 2 != 0 instead.
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Using numbers

We should define constants in a way easy to read

long MILLIS PER DAY = 24 ∗ 60 ∗ 60 ∗ 1000;
long MICROS PER DAY = 24 ∗ 60 ∗ 60 ∗ 1000 ∗ 1000;
p u b l i c long getFactor ( ) {

r e t u r n MICROS PER DAY / MILLIS PER DAY ;
}
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Using numbers II

We should define constants in a way easy to read - but must take care
of overflows in cases like the shown one

long MILLIS PER DAY = 24 ∗ 60 ∗ 60 ∗ 1000;
long MICROS PER DAY = 24 ∗ 60 ∗ 60 ∗ 1000 ∗ 1000L ;
p u b l i c long getFactor ( ) {

r e t u r n MICROS PER DAY / MILLIS PER DAY ;
}

⇒ All computations internally use int if not told otherwise.
⇒ Use capital ’L’ (at the proper place) to avoid overflows.
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But numbers are simple, are they?

We should define constants in a way easy to read

p u b l i c f i n a l c lass DosEquis {
p u b l i c s t a t i c vo id main ( S t r i n g . . . args ) {

char x = ’X ’ ;
i n t i = 0 ;
System . out . p r i n t ( t r ue ? x : 0 ) ;
System . out . p r i n t ( f a l s e ? i : x ) ;

}
}

⇒What does the program print?
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How many iterations

After the overflow and the suprising cast let us confine to a simple loop

p u b l i c f i n a l c lass Count {
p u b l i c s t a t i c vo id main ( S t r i n g . . . args ) {

f i n a l i n t START = 2000000000;
i n t count = 0 ;
f o r ( f l o a t f = START; f < START + 50; f ++)

count ++;
System . out . p r i n t l n ( count ) ;

}
}

⇒What does the program print?
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Simple comparison

The previous examples had been tricky, now let us do a simple
comparison.

wh i le ( i != i ) {}
whi le ( i != i + 0) {}

⇒ Can we turn these loops into infinite loops?
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Concatenating strings

Let us assume that we provide a convenience method to print highway
names.

p r i v a t e vo id printHighwayName ( Character hChar ,
i n t hNumber , S t r i n g count ry ) {

System . out . p r i n t l n ( hChar + hNumber + count ry ) ;
}
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Concatenating strings

Having our beautiful convenience method the following test gives us
an unexpected result.

@Test p u b l i c vo id printA1De ( ) {
printHighwayName ( ’A ’ , 1 , ”DE ” ) ;
}

⇒ Results in ’66DE’.
⇒ The CHARACTER is unboxed and the string is evaluated from left to
right leading to the addition of ’A’ and ’1’.
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Apply best practices (if appropriate)!
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Punishment for violating best practices

In the boardgame Go players should not make overplays as
the expected result is worse for them compared to a correct
move. In Java there is also a lot of stuff we can do but we
should not as the risks never pay out in the long run.

Similar to this we should expect our code to encounter
situations where the fast hacks cause real problems. This
ranges from problems extending or reusing the code to
bugs that occur especially under heavy load in production
environments and were not spotted by tests.
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Confine to using common idioms

Even simple code can surprise developers if using uncommon idioms.

private void printWelcome() {

byte[] message = {1, 2, 3};

if (false) ;

System.out.println(new String(message));

}

⇒What could cause the message to be surprisingly printed out?

c©Sebastian Oerding



Stromberg would use Java

Deceiving but still surprising at a first glance

We should avoid code which sounds deceivingly simple but does not
behave as expected.

p u b l i c c lass Person {
p r i v a t e S t r i n g fName ;
p r i v a t e S t r i n g lName ;

p u b l i c boolean equals ( Person p ) {
r e t u r n fName . equals ( p . fName ) &&

lName . equals ( p . lName ) ;
}

}

⇒ Assuming setters / constructors to be in place this surprisingly may
result in ’Max Muster’ being unequal to ’Max Muster’. How?

c©Sebastian Oerding



Stromberg would use Java

Be slow to be fast

Never return null for arrays or collections.

p u b l i c L i s t<byte []> renderImages ( Scene scene ) {
i f ( renderProcess == n u l l ) r e t u r n n u l l ;
r e t u r n renderProcess . render ( scene ) ;

}

⇒ Is no or close to no performance gain
⇒ Causes a lot of unnecessary code
⇒ Increases cyclomatic complexity of code calling this method
⇒ Requires an additonal test whereever this code is called
⇒ Makes the calling code more clumsy, more difficult to read and to
perform worse
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Be slow to be fast II

By a simple change all of this hassle vanishes.

p u b l i c L i s t<byte []> renderImages ( Scene scene ) {
r e t u r n renderProcess == n u l l ?

C o l l e c t i o n s .<byte []> emptyL is t :
renderProcess . render ( scene ) ;

}

⇒ Avoids the problems
⇒ No performance loss as the list is instantiated only once
⇒ No performance loss as there is no type cast at runtime
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Be slow to be fast III

It looks like a similar methods can easily be written for arrays:

p r i v a t e s t a t i c f i n a l Object [ ] EMPTY ARRAY = {} ;
p u b l i c <T> T [ ] emptyArray ( ) {

/ / The cast i s safe
r e t u r n (T [ ] ) EMPTY ARRAY;

}

⇒ As zero sized arrays are effectively immutable the cast is safe
⇒ Unfortunately you will get a ClassCastException at runtime if
accessing this array (for example using a for each loop)
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Be slow to be fast IV

Unfortunately the approach from the previous sheet does not work in
any way. However we can fix it:

p u b l i c s t a t i c <T , E extends T> T [ ] emptyArray (
Class<T> theClass , Co l l ec t i on<E> elements ) {
r e t u r n (T [ ] ) Array . newInstance (

theClass , elements == n u l l ? 0 : elements . s ize ( ) ) ;
}

⇒ Unfortunately this instantiates a new array for each invocation but
especially on modern JVMs you should not overestimate the costs of
object instantiation
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Use object orientation

Even with object oriented languages it is easy and error prone to write
procedural code:

p r i v a t e enum Defau l t {A, B, C}
p u b l i c Object map( De fau l t d ) {

swi tch ( d ) {
case A : r e t u r n n u l l ;
case B : r e t u r n n u l l ;
case C : r e t u r n n u l l ;

. . .
}

}

⇒ It is easy to forget to extend this method if the enum is extended.
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Use object orientation - II

We could fix this by having a better enum:

p r i v a t e enum Defau l t {
A{ . . . } , B{ . . . } , C{ . . . } ;
abs t r ac t Object foo ( ) ;

}

p u b l i c Object map( De fau l t d ) {
r e t u r n d . foo ( ) ;

}

⇒ Now anybody extending the enum is enforced to implement foo.
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Fun facts
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String concatenation

Since Java 6 string concatenation is no more close to an antipattern
as it has been before.

p u b l i c vo id snake ( ) {
S t r i n g s = ” s ” ;
f o r ( i n t i = 0 ; i < 128; i ++)

s += s ;
}

⇒What happens if running this code?
⇒ Probably you will have an OutOfMemoryError
⇒ If not getting the error weird stuff will happen due to duplicating the
length of the string in each iteration and strings are internally char[]
(with a length of type int) and the overflow of the length
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Stopping Threads

Having a deeper understanding makes us to avoid some pitfalls.

p u b l i c c lass C implements Runnable {
p r i v a t e boolean stop ;
p u b l i c vo id run ( ) {

whi le ( ! stop ) {}
}

p u b l i c vo id stop ( ) {
stop = t rue ;

}
}

⇒What may happen if running this code in a Thread and concurrently
resetting the flag?
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Stopping Threads - II

I The loop may be (nearly) immediately left.

I The loop may be left after some time.

I The loop may never be left.

Especially the last case may sound surprising but it can happen due to
a legal compiler optimization with the while loop transformed into

i f ( ! s top )
wh i le ( t r ue ) {}

⇒ In general the compiler may reorder instructions.
⇒ Synchronization effectively prevents some compiler optimizations
concerning memory access.
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Generic throws declarations

We should know about the subleteties of generics.

p r i v a t e s t a t i c <T extends Throwable> T rethrow (
Throwable t ) throws T {
throw (T) t ;

}

p u b l i c s t a t i c vo id main ( S t r i n g [ ] args ) {
Throwable t = new IOExcept ion ( ” Hi ” ) ;
PersonTest.<RuntimeException>rethrow ( t ) ;

}

⇒What happens if trying to compile / run this code?
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Should we care about the hardware /
operating system?
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Thoughts about hardware

Even with Java we should know some stuff about operating systems
and hardware.

1. There may be different limits depending on the operating system
(file handles, network sockets, ...)

2. The hardware may also reorder instructions (and most pipelined
architectures will do so)

3. Writing code that causes the branch prediction of pipelined
processors to fail often may drastically slow down the application
/ machine

4. Disabling caching by unecessary synchronization / unecessarily
volatile variables may drastically slow down the application /
machine
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