
MOVEX Change Data Capture
Lightweight tool for change data capture in relational databases

Peter Ramm, Otto Group Solution Provider (OSP) GmbH April 2022

Otto Group Solution Provider (OSP)

Founded:
March 1991

Parent company:
Otto Group

Locations:
Dresden, Hamburg, Altenkunstadt, Madrid, Taipei

Number of employees:
> 450

Managing Directors:
Dr. Stefan Borsutzky, Norbert Gödicke, Jens Gruhl

Homepage:
https://www.osp.de

https://www.osp.de/

About me

Peter Ramm
Team lead strategic-technical consulting at OSP Dresden

> 30 years of history in IT projects

Main focus:
• Development of OLTP systems based on Oracle

databases
• Architecture consulting to trouble shooting
• Performance optimization of existing systems

Tasks to be solved by a requested solution
• Capture data change events (insert/update/delete) in relational databases and transfer

these events in a timely manner in JSON format to a Kafka Event Hub.

• Set monitoring per per table, column and event type (insert/update/delete)

• Definition of optional filter conditions as SQL expression

• Definition of Kafka topics per table as target

• Authorization concept with named users and rights assignment on schema level

• Tracking of configuration changes (history)

• Generation of triggers based on configuration data

• Initial transfer of existing data when starting up the CDC tracking of a table

• Execute changes via Web-GUI as well as by http API calls.

Differentiation from established CDC solutions
Why yet another tool for this purpose
• Several solutions for change data capture exist, both commercial and open source (Oracle

Golden Gate, Quest SharePlex, Red Hat Debezium, etc.).

• Most are based on scanning the transaction logs of a DB (late filtering for relevant events)

• This has no impact on the runtime of the original transactions, but:

• To compensate the potential unavailability of the target (Kafka) in an automated way
requires to keep the transaction logs in DB for the maximum assumed target downtime

• Taking into account response time, weekends, etc., this usually means at least 3 days.

• For small proportion of change events in a large transaction processing system, there
would be a disproportionate effort and complexity in dealing with transaction logs

• Other pull alternatives like Kafka-Connect on JDBC level need individual structural
adjustments in the application to work sufficiently performant.

• Use of DB triggers to initially capture the change events that take place

Our solution approach

• Own schema for MOVEX-CDC in source DB, no objects or operations outside this schema,
=> thus no structure impact on the application to be 'skimmed'.

• Buffering of the change events to be transmitted by triggers in local table of the DB in
MOVEX-CDCs schema
=> thus no dependency of the event-triggering transactions on external resources like
MOVEX-CDC application or Kafka

• Asynchronous transfer of events from Kafka buffer table to triggering transaction
Scalable number of parallel threads to ensure timely transmission

• Generation of triggers based on the configuration entered via GUI or JSON import

• Provision of relevant functions by a http API for automating processes

• DB-independent, first implementations for Oracle and SQLite

Pros and cons of this solution approach

Pro:

• Load on original transactions by
trigger (double write)

• Saving resources by filtering for
relevant events at the time they occur

Contra:

• No dependencies or complexities for
technical DB operation

• No adaptations of existing applications
necessary

• Convenient configuration via GUI, but
can also be automated via API

• Possibly downtime needed for trigger
deployment and release update

• Possible coupling of operational risks
for all participants

Motivation from first use case in a large scale PIM

Source
table

Trigger 1

Trigger 2

Trigger n

Stage 2

Stage n

Process 1

Process 2

Process n

Target 1

Target2 Source
table

Trigger Stage
MOVEX

CDC Kafka-Topic

Kafka-
Topic

Consumer

Consumer
Filter/KSQL

Kafka-
Topic

Starting situation:
• Each customer redundantly establishes its

own trigger on tables of interest (up to >
100 triggers per table)

• Solutions for further processing of the
events in different architecture and quality

Target scenario with MOVEX-CDC:
• Exactly one trigger per table and event

type
• One hardened function for catching

events in source DB and transfer to Kafka
• Use publish/subscribe etc. in Kafka

MOVEX-CDC
module

structure

Entity relationship model

• Own schema encapsulates all MOVEX-CDC-
relevant DB objects

• Export of configuration data to JSON file
allows backup outside DB

• Import of configuration data via JSON file e.g.
for setup test systems

• Via JSON import generation of MOVEX-CDC
configuration from external sources possible

• Separate export/import per DB target schema
possible

Supported database systems
• MOVEX-CDC was developed modular and DB-independent based on Ruby on Rails.

Currently supported databases :
• Oracle: all editions with optimization for EE/partitioning
• SQLite: Ensure DB independence in development

Further supported databases planned in the medium term:
• PostgreSQL: Favorite free alternative to Oracle dependency
• MS SQL-Server: For announced use in BI environment
• MySQL / Maria-DB: Possibly if requirements exist

• Runtime environment is a Java VM with jRuby, encapsulated in a Docker container.

• Adaptations are thus in principle imaginable for all relational DB systems with trigger
function and available JDBC driver.

Demo

There‘s a how-to guide with several steps to install, setup and use MOVEX CDC.

Implement change data tracking on an existing Oracle DB including event transfer
to Kafka within 10 minutes:

https://otto-group-solution-provider.gitlab.io/movex-cdc/movex-cdc_demo.html

https://otto-group-solution-provider.gitlab.io/movex-cdc/movex-cdc_demo.html

Implementation: Trigger example
CREATE OR REPLACE TRIGGER T1 FOR INSERT ON SCHEMA.TABLE COMPOUND TRIGGER
… /* Deklariere Memory-Collection payload_tab */

PROCEDURE Flush IS
BEGIN
… /* Schreibe Memory-Collection payload_tab in Event_Log-table */

END Flush;

BEFORE STATEMENT IS
BEGIN
payload_tab.DELETE; /* remove possible fragments of previous transactions */

END BEFORE STATEMENT;

AFTER EACH ROW IS
BEGIN
… /* Schreibe JSON-Record in Memory-Collection, Flush wenn > 1000 Records */

END AFTER EACH ROW;

AFTER STATEMENT IS
BEGIN
Flush; /* Flush Collection in Table */

END AFTER STATEMENT;

END T1;

Implementation: Uniqueness

Uniqueness at the target Kafka:

• Each change event recorded in DB is transferred to Kafka and committed exactly once

• A non commited transmission to Kafka can occur several times if repeated on error
• Kafka distinguishes between read_uncommited and read_commited when consuming

• Each event has a unique sequential event ID created by a DB sequence

• Transactional coupling between the two resources DB and Kafka is implemented with two
nested transactions in the MOVEX CDC application

• There are no XA or 2-phase commit transactions between them
• Due to this, there is at least a tiny hypothetically risk of double transfers

Kafka Cluster

Implementation: guaranteed sequences
• Kafka guarantees delivery of events in the order of their creation only within a partition

• Events with the same key value always end up in the same partition in Kafka

• MOVEX CDC supports optional keys: no key, primary key, fixed value or transaction ID

• MOVEX-CDC only transmits events with the same key value in an ordered sequence, all
others without guarantee of the sequence (conflict of objectives with parallel processing)

Cluster-Node 1 Cluster-Node 3Cluster-Node 2

Topic 1

Topic 2

Partition

Partition

Partition

Partition

Partition

Partition

Implementation: Horizontal scalability
• Bottleneck in the transfer between trigger event and Kafka is the transfer of events from

the staging table EVENT_LOGS to Kafka

• Scalability is given by configurable number of worker threads in the MOVEX CDC
application, each working isolated with own DB and Kafka session
• Depending on the capacity of the runtime env. (CPU, network) several 100 threads are

possible

• The allocation / synchronization of the events from EVENT_LOG to the worker threads is
controlled by DB-Locks (SELECT ... FOR UPDATE SKIP LOCKED)

• The guarantee of the order for events with key is ensured by processing events with the
same key only by exactly one worker thread in the order of their occurrence
• Distribution of keys to threads per modulo on a hash value of the key
• Sequence violation can occur if DB transaction is committed only after successors

with the same key from other DB transactions have already been transferred to Kafka.

Implementation: Fail-safe / Instance redundancy
• Synchronization via DB locks using SELECT ... FOR UPDATE SKIP LOCKED would in

principle also allow several MOVEX-CDC instances to be actively operated in parallel.

• However, in this mode of operation the sequence of events can no longer be guaranteed
with key

• Hot redundancy with multiple active instances should normally not be necessary, because:

• An instance has enough potential for throughput optimization by thread scaling

• For catching the events via DB trigger no running MOVEX CDC instance is needed

• A continous gapless operation of the MOVEX-CDC application is not mandatory :

• Suspension of MOVEX-CDCs Docker container does not lead to data loss, but only
to delay in transmission to Kafka

• This allows scenarios such as version updates, changes in runtime environment,
etc. to be carried out with short downtimes during ongoing production operation

Implementation: Bulk operations

The process chain works consistently with bulk operations:

• Trigger implemented as compound trigger with
• Limitation to max. 1000 JSON records buffered in PL/SQL session memory
• Bulk operation for insert in stage table EVENT_LOGS

• Read records from EVENT_LOGS with SELECT FOR UPDATE SKIP LOCKED
• No indexes for EVENT_LOGS means: Full Table Scan for each access to this table
• Predictable load through interval partitioning with housekeeping of empty partitions
• Max. size of DB transaction towards Kafka is configurable (default: 10.000)

• Transfer of events to Kafka (Produce) with transaction in Kafka cluster
• Size of the transaction corresponds to DB transaction
• Bulk size when transferring to Kafka is limited by Kafka (default 1000, configurable)

Implementation: Fault tolerance
• In case of transmission errors / rejection of events by Kafka a Divide&Conquer procedure

takes effect

• The number of events transmitted by bulk operation is reduced until only a single event is
processed. Among other things, this ensures immediate retry several times.

• If an isolated event still remains erroneous, it is marked and retried with a time delay.
After x unsuccessful attempts, this event will be sorted out in the error table.

• From error table, events can be manually activated for post-processing, otherwise they
will be permanently deleted after a holding period

• Reasons for not broadcasting events can be e.g. :
• Non-existent Kafka topic
• Exceeding the permissible event size
• Configuration without key although log compaction was configured on Kafka side

Implementation: Performance of DB actions (EE)
• The staging table of the events is an interval-partitioned table without any index. This

ensures minimal overhead and maximum availability when inserting the event data in the
productive transactions by trigger.

• The partitioning interval as well as the maximum number of simultaneous transactions
(INI_TRANS) are controllable via the configuration of MOVEX CDC.

• Fully processed partitions are promptly dropped by a housekeeping process.

• Since the events are stored in a table without indexes, this means that reading the events
for transmission to Kafka can only be done via Full Table Scan.

• Interval partitioning ensures a limit to the amount of data to be read via full table scan

• Even with temporarily massive data traffic, the reading effort due to Full Table Scan is
reduced again with the next partition change (no problem with non-reducible high water
mark).

Implementation: Behaviour of DB actions (SE)
• For Oracle Standard Edition rsp. Enterprise Edition without Partitioning Option the staging

table EVENT_LOGS is implemented as a regular heap table with an index on column ID.

• That means: several optimizations based on partitioning do not take place.

• The staging table EVENT_LOGS needs an index on column ID for proper performance.
This adds additional index maintenance load on triggering transaction and a very tiny
risk of blocking between transactions at index block split operations.

• The high water mark of table EVENT_LOGS is not automatically reduced after peak
usage.

• Additional reorganization activities on staging table EVENT_LOGS can by necessary
from time to time depending on type and frequency of usage:
• ALTER TABLE Event_Logs MOVE; to reduce the high water mark
• ALTER INDEX Event_Logs_PK REBUILD; to reduce the size of the index

Performance parameters / limitations
The achievable throughput depends in reality strongly on:

• Database performance

• Performance of the Kafka cluster

• Network latency and throughput / distance between DB, MOVEX-CDC instance and Kafka
cluster

• Number of worker threads

• Size of the JSON structure of the events, from 4 KB on, Oracle stores in significantly
slower CLOB structures instead of heap tables.

• Example throughput for small distance between DB, MOVEX CDC and Kafka with 3
worker threads and JSON < 4K:
820,000 events per minute 1.18 billion events per day

Application operation
• Delivery artifact of MOVEX-CDC is exactly one consistent Docker image

• Configuration is done via a config file or environment variables

• Logging is done via console output of the Docker container, logging level can be changed
dynamically via GUI or API

• Operating status can be queried via HealthCheck API / monitored externally

• Operating statistics (throughputs, error rates, etc.) are collected in table "Statstistics"
every minute, condensed after some time

• Temporary downtime or inaccessibility of DB or Kafka will be tolerated. After resources
are available again, operation will be resumed without further external activity.

• Several configuration parameters can be adjusted at runtime, like no. of worker threads

• Complete self-initialization of the system in DB schema at the start of the container.

Thank you for your interest

Otto Group Solution Provider (OSP) GmbH
Freiberger Str. 35 01067 Dresden
Telefon +49 (0) 351 49723 0
www.osp.de

Resources:

Project root: https://gitlab.com/otto-group-solution-provider/movex-cdc
Documentation: https://otto-group-solution-provider.gitlab.io/movex-cdc/movex-cdc.html
Quick start howto: https://otto-group-solution-provider.gitlab.io/movex-cdc/movex-cdc_demo.html

http://www.osp.de/
https://gitlab.com/otto-group-solution-provider/movex-cdc
https://otto-group-solution-provider.gitlab.io/movex-cdc/movex-cdc.html
https://otto-group-solution-provider.gitlab.io/movex-cdc/movex-cdc_demo.html

