
Ultra-fast In-Memory
Database Applications

Saxony JUG !

Book your microservice framework online training course at
Fast Lane for free of charge $0.00 and save $1,899. Check
out the schedule, choose any course you like and enroll for

free by using our booking code …

YEDlyExn
www.microservices.education

Book Any Course for Free !

Disclaimer

The following is intended to outline our general product direction. It‘s intended for
informational purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code or functionality, and should not be relied
upon in making purchasing decisions. The development, release, and timing of any
features or functionality described for MicroStream‘s products remains at the sole
discretion of MicroStream.

Markus Kett

About us

Florian Habermann

Maven Download

MicroStream now
Part of Helidon

Helidon is a fast framework for developing modern cloud-native
microservices with Java. Helidon is mainly developed by Oracle.

Our Values

MicroStream History

In Productive Use

2015
MicroStream 5
as Open Source

07 / 2021

Development
started
2013

Integration with
Project Helidon

09 / 2021
MicroStream for
Android

12 / 2019

Product Launch

10 / 2019

Company
founded
2019

2013 2014 2015 2016 2017 2018 2020 20212019

Traditional Java Persistence

Traditional Java Persistence

RDBMS

Local Cache

Java VM

OR-Mapping / Data Conversion

App / Microservice

In-Memory DB / Grid
Distributed Cache
Event Streaming (Kafka)

NoSQL

Key-Value
Column

JSON
…

Key-Value
Column

JSON
Graph

…

Tables

Object Graph (RAM)

Objects

Challenge: Storing Objects into
Tables / JSON / Key Value Stores / Graphs

Data Conversion Through
Every Single Read & Write !

▪ Requires lots of CPU power
▪ Reduces your performance
▪ Expensive latencies
▪ Complex architecture
▪ Expensive development process
▪ Inefficient concept requires expensive

cluster infrastructure
▪ Increase your costs of infrastructure

Millisecond
Query Time

Traditional Java Persistence

Challenge: Storing Objects into
Tables / JSON / Key Value Stores / Graphs

Data Conversion Through
Every Single Read & Write !

In-Memory DB / Grid
Distributed Cache
Event Streaming (Kafka)

NoSQL

▪ Requires lots of CPU power
▪ Reduces your performance
▪ Expensive latencies
▪ Complex architecture
▪ Expensive development process
▪ Inefficient concept requires expensive

cluster infrastructure
▪ Increase your costs of infrastructure

Key-Value
Column

JSON
…

Key-Value
Column

JSON
Graph

…

Tables

RDBMS

Objects
Millisecond

Query Time

High Development Effort

▪ 2 data models (Java classes + DB data model)
▪ Data type mapping
▪ Complex ORM frameworks

▪ Additional caching Layers (local Cache, distributed cache, IMDG)
▪ Complex architecture
▪ Strong limitations (data model design)

▪ Mixing different paradigm, reduntantly and competing concepts
▪ Heavyweight dependencies
▪ Effortful testing and deployment process

There are various solutions, but they are only a
more or less elegant way around the problem. No
matter which solution you choose - as long as the
systems are different, every developer will
sooner or later get to the point where his solution
no longer meets one or more of the following
points: Maintainability, performance,
intelligibility.„

The Problem of Incompatible Data Structures
is Well Known as Impedance Mismatch

https://en.wikipedia.org/wiki/Object%E2%80%93relational_impedance_mismatch

MicroStream Java-Native Persistence

MicroStream Persistence

Java VM

MicroStream

App / Microservice

Object Graph (RAM)

Plain File Storage
Binaries

RDBMS
Binaries

Objects

Objects

Objects

Objects

Streaming Objects
Directly Into any Database

Conversion Eliminated !

▪ Simple architecture
▪ Faster time to market
▪ Saves lots of vCPU power
▪ Minimizes latencies
▪ In-memory queries executed in

microseconds
▪ Saves up to 92% costs of infrastructure

NoSQL
In-Memory DB
In-Memory Data Grid
Distributed Cache
Event Streaming
Binaries

1000x faster Queries

Microsecond
Query Time

www.microstream.one

Accelerating Queries up to 1000x

0.19 ms

Hibernate

EHCache

Oracle

439.05
Milliseconds

JPA – Hibernate

MicroStream

-

Oracle

0.19
Milliseconds

MicroStream

2260x

Factor

439.05 ms

2.28
Queries / Second

190.11
Queries / Second

83x
Queries / Second

- 87.5 %

Only 1 Node !

Today with MicroStream:

Costs of Infrastructure
annually

Save up to 90% Cloud Costs

Conventional Cluster for Running a globally App

NoSQL

RDBMS

Traditional Persistence Is
Inefficient. Numerous of Nodes
are Required.

Simplifies Your Development Process

▪ 1 data structure (Java object graph)
▪ 1 data model, your object model, POJOs only
▪ Freely design of your Java object-model

▪ No mappings, no impedance mismatch
▪ No ORM framework
▪ Query language: Java Streams API, GraphQL

▪ No local cache needed
▪ Core Java only

MicroStream Components

MicroStream Persistence
for Android

File System Garbage Collector

File System Abstraction

Database Connectors

Backup

MicroStream Serialization

MicroStream Persistence for the JVM

Legacy Type Mapping

REST Interface

MicroStream Storage Browser

Supported Storages

Runs Wherever Java Runs

Use any JVM Technology

How Does MicroStream Work ?

Data Model: Just POJOs

Freely Design Your Object Model

▪ Use any Java type

▪ Use collections

▪ Use object references

▪ Use circle references

▪ Use any object from 3rd party libraries

Persisting Objects

Append-only Log

Any Storage

Java VM

MicroStream

Application

Object Graph (RAM)

MicroStream Channels

Any Storage

Multithreaded IO Ops

Java VM

MicroStream

Application

Object Graph (RAM)

4 Cores – 4 Channels
64 Cores – 64 Channels

Storage Garbage Collector

Any Storage Any Storage

Java VM

MicroStream

Application

Object Graph (RAM)

Load any Object-References Dynamically Into RAM

Queries

1000x faster Queries

Microsecond
Query Time

MicroStream Features

Use Powerful Features From the Java Ecosystem

Rules & Challenges

Your Object Graph in RAM is Your Database

Java VM

JPA

Application

Object Graph (RAM)

Java VM

MicroStream

Application

Object Graph (RAM)

Traditional Database Server Paradigm Java In-Memory Data Processing Paradigm

Database Server
▪ DBMS
▪ Database
▪ Queries
▪ Persistent Data

Any Storage
▪ Persistent Data

▪ Database (In-Memory)
▪ Queries

Your Database is here,
Queries are executed here

Your Database is here,
Queries are executed here

All In-Memory or Lazy-Loading ?

Storage
1 GB

Java VM

MicroStream

Application

32 GB RAM

Storage
1000 GB

Java VM

MicroStream

Application

4 GB RAM

Enough RAM available: Data Storage is bigger than RAM:

▪ Load your entire DB into RAM

▪ Pure in-memory computing

▪ No latencies

▪ Super fast

▪ Lower startup time

▪ Preload most important data only (eager loading)

▪ Use lazy-loading to load data on demand only

▪ Clear lazy references which are not used anymore

▪ Faster startup time

MicroStream Architecture Rules

1 Node

1 Storage
1 Node

n Storages

n Nodes

1 Storage

Concurrency
Issues on Writes !

Memory Management

▪ Memory is fully managed by the JVM

▪ Use lazy references if possible

▪ Clear your lazy references which are not used anymore

▪ In case of garbage collector issues, try OpenJ9 or Azul JVM

Challenges with MicroStream

▪ Built for Java developers

▪ Paradigm shift in database programming

▪ No SQL support

▪ MicroStream is a storage engine, but not a DBMS

▪ Your application must cover DBMS tasks

▪ You must care vor validation

▪ You have to care for concurrency

▪ Not suited for DBAs

Beyond Persistence …

MicroStream Serialization

Java Serialization is the
biggest security issue in Java.
50% of all vulnerabilities are

linked to serialization.

Mark Reinhold

Java Serialization was
a Horrible Mistake.

„

Mark Reinhold
Chief Architect of the Java Platform

Java VM

Java Serialization

Malware

Serializable Objects

Sender

Receiver

Java VM

Java Serialization –
Deserialization

Application / Microservice

Serializable Objects

Java Serialization

Roadmap

Distributed Systems with
MicroStream Cluster

Object Graph Replication

Object Graph

Object Graph

Object Graph

MicroStream Cluster

MicroStream Cluster

MicroStream Cloud
MicroStream Single Storage & MicroStream Cluster

as a Service

MicroStream Cloud

MicroStream
Remote Storage

Gateway

MicroStream Cloud
Platform as a Service

Public / Hybrid Cloud

Storage

Customer App

MicroStream Single Storage
as a Service

MicroStream Cloud

Public / Hybrid Cloud MicroStream Cloud
Platform as a Service

Container Platform

Storage

MicroStream Cluster
as a Service

Benefits

▪ Simple setup
▪ Simpler cost control
▪ No cloud know-how required

▪ Fewer DevOp resources required
▪ High-availability
▪ Auto-scale

▪ Fully-managed services
▪ Enterprise-grade security
▪ Production support by MicroStream

Java VM

MicroStream Serialization

Application / Microservice

Object Graph (RAM)

Sender

Receiver

Java VM

MicroStream Serialization –
Deserialization

Application / Microservice

Object Graph (RAM)

MicroStream Serialization

Get Started …

www.youtube.com/c/MicroStream/videos

Get Started with MicroStream

Learn: www.microstream.one

GitHub: https://github.com/microstream-one/microstream

Doc: https://manual.docs.microstream.one/data-store/getting-started

Videos on YouTube: https://www.youtube.com/c/MicroStream/videos

Free courses at Fast Lane: https://www.microservices.education

