
GraalVM Enterprise 21.1.0
The universal VM

21th of April 2021

Wolfgang Weigend

Master Principal Solution Engineer | global Java Team

Java Technology & GraalVM and Architecture

Safe harbor statement

The following is intended to outline our general product direction. It is
intended for information purposes only, and may not be incorporated into
any contract. It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making purchasing decisions.
The development, release, timing, and pricing of any features or functionality
described for Oracle’s products may change and remains at the sole
discretion of Oracle Corporation.

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.2

GraalVM Native Image early adopter status
GraalVM Native Image technology (including SubstrateVM) is Early Adopter technology. It is available
only under an early adopter license and remains subject to potentially significant further changes,
compatibility testing and certification.

• GraalVM in the Java SE Subscription

• GraalVM Enterprise Intro

• GraalVM Just-in-Time Compiler

• GraalVM Polyglot support for multiple languages

• GraalVM Enterprise Native Image

• GraalVM Enterprise for cloud native development

• Java in Containers

• Summary

Agenda

Copyright © 2021, Oracle and/or its affiliates | 3

• Oracle Java SE Subscription now entitles customers to use Oracle
GraalVM Enterprise at no additional cost

• Key benefits for Java SE Subscribers:

• Native Image utility to compile Java to native executables that start almost instantly
for containerized workloads

• High-performance Java runtime with optimizing compiler that can improve
application performance

GraalVM Enterprise with Java SE Subscription

+
4 Copyright © 2021, Oracle and/or its affiliates

GraalVM Enterprise

High-performance optimizing
Just-in-Time (JIT) compiler

Multi-language support for the JVM

GraalVM Enterprise
High-performance runtime that provides significant improvements in application performance and efficiency

Copyright © 2021, Oracle and/or its affiliates6

Ahead-of-Time (AOT) “native
image” compiler

GraalVM JIT Compiler working

7 Copyright © 2021, Oracle and/or its affiliates

• Inlining

 Code der aufzurufenden Methode/Funktion anstelle des Aufrufs

• On-Stack Replacement

 Loop-Compilation, ohne auf den Methodenaufruf zu warten

• Escape Analysis

 Automatische Stack-Allokation, ohne GC

• De-Optimierung

 Optimierung rückgängig machen

JIT Compiler written in C++

8 Copyright © 2021, Oracle and/or its affiliates

JIT Compiler written in Java

9 Copyright © 2021, Oracle and/or its affiliates

GraalVM

10 Copyright © 2021, Oracle and/or its affiliates

• Graal

 JIT Compiler
o GraalGraalGraalGraal in in in in GraalVMGraalVMGraalVMGraalVM ---- A new Java JIT CompilerA new Java JIT CompilerA new Java JIT CompilerA new Java JIT Compiler

 Graal integrated via Java Virtual Machine Compiler Interface (JVM CI)

 Use a JDK with Graal (jdk.internal.vm.compiler)

• Truffle

 Language Implementation Framework

• Substrate VM

 Runtime Library and a set of tools for building Java AOT compiled code

GraalVM - Polyglot (1)

11 Copyright © 2021, Oracle and/or its affiliates

GraalVM - Polyglot (2)

12 Copyright © 2021, Oracle and/or its affiliates

GraalVM - Language Usability

Production-Ready Experimental Visionary

Java Ruby Python

Scala, Groovy, Kotlin R VSCode Plugin

JavaScript LLVM Tool Chain GPU Integration

Node.js WebAssembly

Native Image LLVM Backend

VisualVM

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1.000 10.000 100.000 1.000.000 10.000.000

R
e
q
u
e
st
s
p
e
r
S
e
co
n
d

Cumulative number of requests sent by ApacheBench

Popular Framework Benchmark

GraalVM Native Image

GraalVM JIT

JDK12, HotSpot

16% higher

14 Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

GraalVM Enterprise throughput

$$$

Peak ThroughputLow Memory
Footprint

Small Packaging

Ahead-of-Time

Just-in-Time

Startup Speed

GraalVM Enterprise compilation performance characteristics

Reduced
Max Latency

GraalVM Enterprise compilation performance characteristics
Profile Guided Optimization

Low Memory
Footprint

Reduced
Max Latency

Small Packaging

Peak Throughput

Ahead-of-Time

Just-in-Time

Startup Speed

GraalVM Native Image

Windows
Executable

Microservices and Containers
GraalVM Enterprise Native Image—Ahead-of-time compiler & runtime

Up to 5x less memory
100x faster startup

macOS
Executable

Linux
Executable

.class

.jar

.class

.jar

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.18

Closed World Assumption

• The points-to analysis needs to see all bytecode

– Otherwise aggressive AOT optimizations are not possible

– Otherwise unused classes, methods, and fields cannot be removed

– Otherwise a class loader / bytecode interpreter is necessary at run time

• Dynamic parts of Java require configuration at build time

– Reflection, JNI, Proxy, resources, ...

• No loading of new classes at run time

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.19

Image Heap

• Execution at run time starts with an initial heap: the “image heap”

– Objects are allocated in the Java VM that runs the image generator

– Heap snapshotting gathers all objects that are reachable at run time

• Do things once at build time instead at every application startup

– Class initializers, initializers for static and static final fields

– Explicit code that is part of a so-called “Feature”

• Examples for objects in the image heap

– java.lang.Class objects, Enum constants

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.20

One Compiler, Many Configurations

21

Java Java Java Java HotSpotHotSpotHotSpotHotSpot VMVMVMVM

ExecutesExecutesExecutesExecutes

Your ApplicationYour ApplicationYour ApplicationYour Application

JIT Compilation

1111

Compiler configured for justCompiler configured for justCompiler configured for justCompiler configured for just----inininin----time compilation inside the Java time compilation inside the Java time compilation inside the Java time compilation inside the Java HotSpotHotSpotHotSpotHotSpot VMVMVMVM

GraalVM
Compiler

App.jar

1111

One Compiler, Many Configurations

22

Java Java Java Java HotSpotHotSpotHotSpotHotSpot VMVMVMVM

ExecutesExecutesExecutesExecutes

Your ApplicationYour ApplicationYour ApplicationYour Application

JIT Compilation

1111

1111 Compiler configured for justCompiler configured for justCompiler configured for justCompiler configured for just----inininin----time compilation inside the Java time compilation inside the Java time compilation inside the Java time compilation inside the Java HotSpotHotSpotHotSpotHotSpot VMVMVMVM

2222 Compiler also used for justCompiler also used for justCompiler also used for justCompiler also used for just----inininin----time compilation of JavaScript codetime compilation of JavaScript codetime compilation of JavaScript codetime compilation of JavaScript code

GraalVM
Compiler

GraalJSApp.jar

2222

One Compiler, Many Configurations

23

Java Java Java Java HotSpotHotSpotHotSpotHotSpot VMVMVMVM

ExecutesExecutesExecutesExecutes

Native Image GeneratorNative Image GeneratorNative Image GeneratorNative Image Generator

Points-to Analysis AOT CompilationJIT Compilation

Native ImageNative ImageNative ImageNative Image

BuildsBuildsBuildsBuilds

1111

Compiler configured for justCompiler configured for justCompiler configured for justCompiler configured for just----inininin----time compilation inside the Java time compilation inside the Java time compilation inside the Java time compilation inside the Java HotSpotHotSpotHotSpotHotSpot VMVMVMVM

Compiler configured for static pointsCompiler configured for static pointsCompiler configured for static pointsCompiler configured for static points----to analysisto analysisto analysisto analysis

Compiler configuredCompiler configuredCompiler configuredCompiler configured for aheadfor aheadfor aheadfor ahead----ofofofof----time compilationtime compilationtime compilationtime compilation

GraalVM
Compiler 2222

GraalVM
Compiler 3333

GraalVM
Compiler

Your
Application

1111

2222

3333

One Compiler, Many Configurations

24

Java Java Java Java HotSpotHotSpotHotSpotHotSpot VMVMVMVM

ExecutesExecutesExecutesExecutes

Native Image GeneratorNative Image GeneratorNative Image GeneratorNative Image Generator

Points-to Analysis AOT CompilationJIT Compilation

Native ImageNative ImageNative ImageNative Image

JIT Compilation

GraalJSBuildsBuildsBuildsBuilds

1111

1111 Compiler configured for justCompiler configured for justCompiler configured for justCompiler configured for just----inininin----time compilation inside the Java time compilation inside the Java time compilation inside the Java time compilation inside the Java HotSpotHotSpotHotSpotHotSpot VMVMVMVM

2222 Compiler configured for static pointsCompiler configured for static pointsCompiler configured for static pointsCompiler configured for static points----to analysisto analysisto analysisto analysis

3333 Compiler configured for aheadCompiler configured for aheadCompiler configured for aheadCompiler configured for ahead----ofofofof----time compilationtime compilationtime compilationtime compilation

4444 Compiler configured for justCompiler configured for justCompiler configured for justCompiler configured for just----inininin----time compilation inside a Native Imagetime compilation inside a Native Imagetime compilation inside a Native Imagetime compilation inside a Native Image

GraalVM
Compiler 2222

GraalVM
Compiler 3333

GraalVM
Compiler

4444

GraalVM
Compiler

Native Image - Details

AheadAheadAheadAhead----ofofofof----TimeTimeTimeTime
CompilationCompilationCompilationCompilation

Application

Libraries

JDK

Substrate VM

Points-to Analysis

Run Initializations

Heap Snapshotting

Input:
All classes from application,

libraries, and VM

Iterative analysis until Iterative analysis until Iterative analysis until Iterative analysis until
fixed point is reachedfixed point is reachedfixed point is reachedfixed point is reached

Code in
Text Section

Image Heap in
Data SectionImage Heap Image Heap Image Heap Image Heap

WritingWritingWritingWriting

Output:
Native executable

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.25

Benefits of the Image Heap

26

Without GraalVM
Native Image

Build timeBuild timeBuild timeBuild time

Run timeRun timeRun timeRun time

GraalVM Native Image
(default)

Build timeBuild timeBuild timeBuild time

Run timeRun timeRun timeRun time

GraalVM Native Image:
Load configuration file

at build time

Build timeBuild timeBuild timeBuild time

Run timeRun timeRun timeRun time

Load Classes

Load Configuration File

Run Workload

Compile Sources

Load Classes

Load Configuration File

Run Workload

Compile Sources

Load Classes

Load Configuration File

Run Workload

Compile Sources

Profile-Guided Optimizations (PGO)

• AOT compiled code cannot optimize itself at run time (no “hot spot” compilation)

• PGO requires representative workloads

• Optimized code runs immediately at startup, no “warmup” curve

native-image
--pgo-instrument

Instrumented
Binary

native-image
--pgo

Optimized
BinaryWorkloads Profiles

Out of Band Optimization

27

Lower cloud costs for containerized workloads, and microservices
GraalVM Enterprise Native Image

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.28

0,1

1

10

100

1000

C GraalVM Native

Image

Go Java HotSpot VM

(JDK 11)

Execution Time [ms]

0

5

10

15

20

25

30

35

40

45

50

C GraalVM Native

Image

Go Java HotSpot VM

(JDK 11)

Maximum memory [MB]

Competitive startup time Significantly reduced memory requirements

Supported by leading frameworks

GraalVM Enterprise Native Image

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.29

Coming Soon!

Which version of Spring Boot is certified or official supported with GraalVM EE 21 native image?

• We don’t currently offer certification of Spring Boot but we are discussing it.

• But Spring will declare Spring Native 1.0, which is essentially “certification” for Native Image.

When do we expect the declaration of Spring Native 1.0, which is the essentially “certification” for
the GraalVM native image?

• Spring Native is in beta now, as the latest 0.9.1

• Spring Native 0.9.0 supports Spring Boot 2.4.3,

• Spring Native 0.9.1 will support Spring Boot 2.4.4, etc.

• https://spring.io/blog/2021/03/11/announcing-spring-native-beta

Spring Native should be GA in the next few months/weeks.

GraalVM Enterprise Native Image - Spring Native

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.30

Coming Soon!

31

What GraalVM is for Microservices and Cloud Runtime

Your Java /Java Bytecode
Application (Native Binary)

GraalVM

Java Service
(Native Binary)

GraalVM

Java Service
(Native Binary)

GraalVM

Up to 5x Less Memory
100x Faster Startup

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.

983 ms

1967 ms

979 ms

11 ms

30 ms

23 ms

0 ms 500 ms 1000 ms 1500 ms 2000 ms

Quarkus

Micronaut

Helidon

GraalVM Native Image

JDK 8
32

Cloud Services – Startup Time

42x

65x

93x

160 MByte

198 MByte

107 MByte

16 MByte

37 MByte

26 MByte

0 MByte 50 MByte 100 MByte 150 MByte 200 MByte 250 MByte

Quarkus

Micronaut

Helidon

GraalVM Native Image

JDK 833

Cloud Services – Memory Footprint

5x

4x

10x

GraalVM Enterprise Native Image based on JDK 11 with microservices frameworks
Build Profiles

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.34

1. Executable Jar
• Hollow jar
• All third-party dependencies are stored separately to take advantage of
Docker layering

2. Jlink image
• Jlink optimized JRE + your application
• Faster startup time and smaller image size with no code restrictions

3. GraalVM native-image
• Fastest startup time and smallest memory consumption
• Introduces some code restrictions related to usage of runtime operations

Java in Containers

Java in Container

Copyright © 2021, Oracle and/or its affiliates36

App Code &
Dependencies

JDK Modules

Base OS Image

HotSpot Java VM

Java in a Slim/Distroless Container

Copyright © 2021, Oracle and/or its affiliates37

App Code &
Dependencies

Base OS
Image

Unnecessary
Tools and
Binaries

JDK Modules

HotSpot Java VM

App Code &
Dependencies

Used JDK
Modules

Unused JDK
Modules

HotSpot Java VM

Java using jlink in a Slim/Distroless Container

Copyright © 2021, Oracle and/or its affiliates38

Base OS
Image

App Code &
Dependencies

Used JDK
Modules

HotSpot Java VM

Java using jlink in a Slim/Distroless Container

Copyright © 2021, Oracle and/or its affiliates39

Base OS
Image

GraalVM Native Image — built on optimizing Graal compiler technology

Graal JIT
Compiler

HotSpot
JVM

Native Image
.class

.jar

.class

.jar

Copyright © 2021, Oracle and/or its affiliates40

Java Native Executable in Scratch Container w/ GraalVM Native Image

Copyright © 2021, Oracle and/or its affiliates41

Used App
Code

Unused Code

Base OS
Image

Unused Code

Used JDK Code

HotSpot Java VM

native-image --static -jar <jar> <app name>

Java Native Executable in Scratch Container w/ GraalVM Native Image

Copyright © 2021, Oracle and/or its affiliates42

Used App
Code

Base OS
Image

Used JDK Code

HotSpot Java VM

Java Native Executable in Scratch Container w/ GraalVM Native Image

Copyright © 2021, Oracle and/or its affiliates43

libc statically linked into executable

Base OS
Image

thin runtime services layer & GC

machine code for app, dependencies, & JDK code

Java Native Executable in Scratch Container w/ GraalVM Native Image

Copyright © 2021, Oracle and/or its affiliates44

Base OS
Image

FROM scratch

COPY helloworld app

ENTRYPOINT ["/app"]

Compile, generate executable, build Container

$ javac HelloWorld.java

$ native-image --static HelloWorld hello

-rwxrwxr-x. 1 opc opc 11M Jan 26 18:54 hello

$ docker build . –t hello:scratch

REPOSITORY TAG IMAGE ID CREATED SIZE

hello static 7afc946a849e About a minute ago 10.7MB

Java Native Executable in Scratch Container w/ GraalVM Native Image

Copyright © 2021, Oracle and/or its affiliates45

Java Hello World container image size ~ 11 MB

• JVM behaves as a good (Container) citizen

• Reduce “latency”
• Container Startup

• Application Startup

• All OpenJDK investments “leaks” into containers!
• New Java languages

• New JDK Features

• Performance improvements

• Footprint improvements

• Etc.

• GraalVM offers unparalleled startup and container size reductions

JVMs in Containers — recap

Copyright © 2021, Oracle and/or its affiliates46

Multilingual Virtual Machine

 Test your applications with GraalVM

• Documentation and downloads

 Connect your technology with GraalVM

• Integrate GraalVM into your application

GraalVM Enterprise — Summary

High-performance optimizing
Just-in-Time (JIT) compiler

Multilingual Virtual MachineAhead-of-Time (AOT)
“native image” compiler

Copyright © 2021, Oracle and/or its affiliates | 47

GraalVM Enterprise

Copyright © 2021, Oracle and/or its affiliates | 48

Wolfgang.Weigend@oracle.com

Twitter: @wolflook

Thanks!

GraalVM 21
Native Image Quick Reference

Copyright © 2021, Oracle and/or its affiliates | 50

GraalVM 21.1.0
Release Notes

GraalVM Enterprise Edition 21.1.0 Release Notes (1)

Copyright © 2021, Oracle and/or its affiliates | 52

• Java
The Oracle JDK release that GraalVM Enterprise Edition is built on was updated to:

• 8u291 for Java 8 based GraalVM Enterprise, please see Java SE 8 release notes

• 11.0.11 for Java 11 based GraalVM Enterprise, please see Java SE 11 release notes

• 16.0.1 for Java 16 based GraalVM Enterprise, please see Java SE 16 release notes

• Platform Updates
• Java 16 (experimental) support:
 The GraalVM Enterprise distribution based on Oracle Java 16 is available for download with several known limitations.

• MacOS platform support:
 GraalVM Enterprise builds for macOS based on Oracle JDK 8 continue to be available, unlike builds of GraalVM Community for macOS

based on OpenJDK 8 which are no longer being produced.

• Linux AArch64 platform compatibility:
 The GraalVM Enterprise distributions for Linux AArch64 architecture remain experimental in this release. Supported features include the

GraalVM compiler, the gu tool, the Node.js JavaScript runtime, Native Image, some developer tools.

https://docs.oracle.com/en/graalvm/enterprise/21/docs/overview/release-notes/

GraalVM Enterprise Edition 21.1.0 Release Notes (2)

Copyright © 2021, Oracle and/or its affiliates | 53

• Compiler

• Native Image

• Truffle

• Java on Truffle

• JavaScript

• LLVM Runtime (Sulong)

• Ruby

• Python

• R

• WebAssembly (GraalWasm)

• Truffle Language Contexts

• Truffle Language and Tool Implementations

https://docs.oracle.com/en/graalvm/enterprise/21/docs/overview/release-notes/

GraalVM Enterprise Edition 21.1.0 Release Notes (3) - Tools

Copyright © 2021, Oracle and/or its affiliates | 54

• Visual Studio Code Extensions - Added results visualization for unit tests:

GraalVM Enterprise Edition 21.1.0 Release Notes (4) - Tools

Copyright © 2021, Oracle and/or its affiliates | 55

• Visual Studio Code Extensions - Improved Micronaut support by adding
YAML <> Java code editing features:

GraalVM Enterprise Edition 21.1.0 Release Notes (5) - Tools

Copyright © 2021, Oracle and/or its affiliates | 56

• Visual Studio Code Extensions - Summary

• Added results visualization for unit tests

• Improved Micronaut support by adding YAML <> Java code editing features

• Added a number of refactorings.

• Included Micronaut projects Docker build commands.

• Improved support for Maven and Gradle multi-project builds.

GraalVM Enterprise Edition 21.1.0 Release Notes (6) - Tools

Copyright © 2021, Oracle and/or its affiliates | 57

• VisualVM
• Added support for upcoming JDK 16

• Added support for the new Apple M1 processor (aarch64)

• Added support for the importation of plugins from the previous release

• Added a display list of enabled modules in heap dumps feature, taken from JDK 9+ created by jlink

GraalVM 21.0.0
Espresso

GraalVM Enterprise Edition 21.0.0 – Espresso (1)

Copyright © 2021, Oracle and/or its affiliates | 59

• A meta-circular Java bytecode interpreter for the GraalVM

• Espresso is a fully meta-circular implementation of The Java Virtual Machine

Specification, Java SE 8 and 11 Edition, written in Java, capable of running

non-trivial programs at speed

• A Java bytecode interpreter at its core, turned Just-In-Time (JIT) compiler by

leveraging Truffle and the Graal compiler on the GraalVM

• It highlights the sublime potential of the GraalVM as a platform for

implementing high-performance languages and runtimes

https://github.com/oracle/graal/tree/master/espresso

☕☕☕☕

GraalVM Enterprise Edition 21.0.0 – Espresso (2) - Status

Copyright © 2021, Oracle and/or its affiliates | 60

• Espresso is still an early prototype, but it already passes the Java Compatibility Kit (a.k.a. the JCK or TCK

for Java SE) 8c and 11 runtime suite

• Espresso can compile itself with both javac and (the Eclipse Java Compiler) ecj

It features complete meta-circularity: it can run itself any amount of layers deep, preserving all the

capabilities (Unsafe, JNI, Reflection...) of the base layer. Running HelloWorld on three nested layers

of Espresso takes ~15 minutes

• Espresso is similar to HotSpot Express, the same codebase can run either an 8 or 11 guest JVM, on either

an 8 or 11 host JVM

• The development of Espresso happens mostly on HotSpot, but this configuration (Espresso on HotSpot)

is only supported on Linux

• Espresso's native image runs on Linux, MacOS and Windows

https://github.com/oracle/graal/tree/master/espresso

GraalVM Downloads

GraalVM Community is available for free for any
use. It is built from the GraalVM sources available
on GitHub. We provide pre-built binaries for
Linux/X86, Linux/ARM, macOS, and Windows
platforms on x86 64-bit systems. Support for the
Windows and Linux/ARM platforms, and the
Python, Ruby and R languages is experimental.

Note

GraalVM Community Edition contains significant
technology from other projects including OpenJDK
and Node.js which are not maintained by the
GraalVM community. GraalVM Enterprise Edition is
recommended for production applications.

GraalVM Downloads

GraalVM Enterprise provides additional performance,
security, and scalability relevant for running
applications in production. You can get a version of
GraalVM Enterprise that is free for evaluation and
developing new applications via the Oracle
Technology Network (OTN), or a commercially
licensed version for production use via the Oracle
Store.

We provide binaries for Linux, macOS, and Windows
platforms on x86 64-bit systems. Support for the
Windows and Linux/ARM platforms, and the Python,
Ruby and R languages is experimental.

Enterprise EditionEnterprise EditionEnterprise EditionEnterprise EditionCommunity EditionCommunity EditionCommunity EditionCommunity Edition

Copyright © 2021, Oracle and/or its affiliates. All rights reserved.62

GraalVM – Downloads
GraalVM is distributed as Community Edition and Enterprise Edition. Listed below are bundles available:

• GraalVM EE 21.1.0 based on Oracle Java 8u291
• GraalVM EE 21.1.0 based on Oracle Java 11.0.11
• GraalVM EE 21.1.0 based on Oracle Java 16.0.1

• OS: Linux, macOS, Windows
• https://www.graalvm.org/downloads/

GraalVM – Downloads

