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Why Graphs?
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The World is a Graph
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Some Use-Cases
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Social	
  Network



(c) Neo Technology, Inc 2014

(Network)	
  Impact	
  Analysis
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Route	
  Finding
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Recommenda<ons
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Logis<cs
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Access	
  Control
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Fraud	
  Analysis
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Securi<es	
  &	
  Debt
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What Is A Graph, 
Anyway?
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A	
  Graph
Node

Relationship
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Four Graph Model 
Building Blocks
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Property	
  Graph	
  Data	
  Model
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Nodes
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Rela<onships
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Rela<onships	
  (con<nued)

Nodes	
  can	
  have	
  more	
  
than	
  one	
  rela<onship

Self	
  rela<onships	
  are	
  allowed

Nodes	
  can	
  be	
  connected	
  by	
  more	
  
than	
  one	
  rela<onship
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Labels
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Four	
  Building	
  Blocks
๏ Nodes	
  

• En<<es	
  

๏ Rela<onships	
  

• Connect	
  en<<es	
  and	
  structure	
  domain	
  

๏ Proper<es	
  

• AJributes	
  and	
  metadata	
  

๏ Labels	
  

• Group	
  nodes	
  by	
  role
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Whiteboard	


Friendlyness

Easy to design and model	


direct representation of the model
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Tom Hanks Hugo Weaving

Cloud Atlas
The Matrix

Lana 
Wachowski

ACTED_IN

ACTED_IN
ACTED_IN

DIRECTED

DIRECTED
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name: Tom Hanks 
born: 1956

title: Cloud Atlas 
released: 2012

title: The Matrix 
released: 1999

name: Lana Wachowski 
born: 1965

ACTED_IN 
roles: Zachry

ACTED_IN 
roles: Bill Smoke

DIRECTED

DIRECTED

ACTED_IN 
roles: Agent Smith

name: Hugo Weaving 
born: 1960

Person

Movie

Movie

Person Director

ActorPerson Actor
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Aggregate vs. 
Connected Data-Model
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What is NOSQL?

It’s not “No to SQL”

It’s not “Never SQL”

It’s “Not Only SQL”

NOSQL \no-seek-wool\ n. Describes ongoing 
trend where developers increasingly opt for 
non-relational databases to help solve their 
problems, in an effort to use the right tool for 
the right job.
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NOSQL

Relational
Graph

Document

KeyValue

Riak

Column 
oriented

Redis

Cassandra

Mongo

Couch

Neo4j

MySQL Postgres

NOSQL Databases
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“There is a significant downside - the whole approach works 
really well when data access is aligned with the aggregates, but 
what if you want to look at the data in a different way? Order 
entry naturally stores orders as aggregates, but analyzing 
product sales cuts across the aggregate structure. The 
advantage of not using an aggregate structure in the database 
is that it allows you to slice and dice your data different ways 
for different audiences. 
!
This is why aggregate-oriented stores talk so much about map-
reduce.” 

Martin Fowler 

Aggregate Oriented Model

http://martinfowler.com/bliki/AggregateOrientedDatabase.html
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The connected data model is based on fine grained elements 
that are richly connected, the emphasis is on extracting many 

dimensions and attributes as elements.  
Connections are cheap and can be used not only for the 

domain-level relationships but also for additional structures 
that allow efficient access for different use-cases. The fine 

grained model requires a external scope for mutating 
operations that ensures Atomicity, Consistency, Isolation and 

Durability - ACID also known as Transactions. 
!

Michael Hunger

Connected Data Model
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Looks different, fine. Who cares?

๏a sample social graph 	
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Graph Querying
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You know how to query a  
relational database!
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Just use SQL

38users skillsuser_skills

select skills.name
from users join user_skills on (...) join skills on (...)
where users.name = “Michael“
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How to query a graph?
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// find starting nodes
MATCH (me:Person {name:'Andreas'})

Andreas

You traverse the graph

40
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// find starting nodes
MATCH (me:Person {name:'Andreas'})
// then traverse the relationships
MATCH (me:Person {name:'Andreas'})-[:FRIEND]-(friend)

-[:FRIEND]-(friend2)
RETURN friend2

Andreas

You traverse the graph

40
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Cypher 
a pattern-matching  

query language for graphs
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Cypher attributes

#1 Declarative 

You tell Cypher what you 
want, not how to get it

42
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Cypher attributes

#2 Expressive 

Optimize syntax for reading

43

MATCH (a:Actor)-[r:ACTS_IN]->(m:Movie) 
RETURN a.name, r.role, m.title
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Cypher attributes

#3 Pattern Matching 

Patterns are easy for your 
human brain

44



(c) Neo Technology, Inc 2014

Query Structure
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MATCH (n:Label)-[:REL]->(m:Label) 
WHERE n.prop < 42 
WITH n, count(m) as cnt, 
     collect(m.attr) as attrs 
WHERE cnt > 12 
RETURN n.prop, 
       extract(a2 in 
          filter(a1 in attrs  
             WHERE a1 =~ "...-.*")  
       | substr(a2,4,size(a2)-1)] 
       AS ids 
ORDER BY length(ids) DESC 
LIMIT 10

Query Structure
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MATCH 
describes the pattern
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MATCH (n:Label)-[:REL]->(m:Label) 
WHERE n.prop < 42 
WITH n, count(m) as cnt, 
     collect(m.attr) as attrs 
WHERE cnt > 12 
RETURN n.prop, 
       extract(a2 in 
          filter(a1 in attrs  
             WHERE a1 =~ "...-.*")  
       | substr(a2,4,size(a2)-1)] 
       AS ids 
ORDER BY length(ids) DESC 
SKIP 5 LIMIT 10

MATCH - Pattern
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WHERE 
filters the result set



(c) Neo Technology, Inc 2014

MATCH (n:Label)-[:REL]->(m:Label) 
WHERE n.prop < 42 
WITH n, count(m) as cnt, 
     collect(m.attr) as attrs 
WHERE cnt > 12 
RETURN n.prop, 
       extract(a2 in 
          filter(a1 in attrs  
             WHERE a1 =~ "...-.*")  
       | substr(a2,4,size(a2)-1)] 
       AS ids 
ORDER BY length(ids) DESC 
SKIP 5 LIMIT 10

WHERE - filter
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RETURN 
returns the result rows
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MATCH (n:Label)-[:REL]->(m:Label) 
WHERE n.prop < 42 
WITH n, count(m) as cnt, 
     collect(m.attr) as attrs 
WHERE cnt > 12 
RETURN n.prop,  
       extract(a2 in 
          filter(a1 in attrs  
             WHERE a1 =~ "...-.*")  
       | substr(a2,4,size(a2)-1)] 
       AS ids 
ORDER BY length(ids) DESC 
SKIP 5 LIMIT 10

RETURN - project
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ORDER BY	


LIMIT SKIP 
sort and paginate
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MATCH (n:Label)-[:REL]->(m:Label) 
WHERE n.prop < 42 
WITH n, count(m) as cnt, 
     collect(m.attr) as attrs 
WHERE cnt > 12 
RETURN n.prop, 
       extract(a2 in 
          filter(a1 in attrs  
             WHERE a1 =~ "...-.*")  
       | substr(a2,4,size(a2)-1)] 
       AS ids 
ORDER BY length(ids) DESC 
SKIP 5 LIMIT 10

ORDER BY LIMIT - Paginate
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WITH 
combines query parts	



like a pipe
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MATCH (n:Label)-[:REL]->(m:Label) 
WHERE n.prop < 42 
WITH n, count(m) as cnt, 
     collect(m.attr) as attrs 
WHERE cnt > 12 
RETURN n.prop, 
       extract(a2 in 
          filter(a1 in attrs  
             WHERE a1 =~ "...-.*")  
       | substr(a2,4,size(a2)-1)] 
       AS ids 
ORDER BY length(ids) DESC 
SKIP 5 LIMIT 10

WITH + WHERE = HAVING
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Collections 
powerful datastructure 

handling
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MATCH (n:Label)-[:REL]->(m:Label) 
WHERE n.prop < 42 
WITH n, count(m) as cnt, 
     collect(m.attr) as attrs 
WHERE cnt > 12 
RETURN n.prop, 
       extract(a2 in 
          filter(a1 in attrs  
             WHERE a1 =~ "...-.*")  
       | substr(a2,4,size(a2)-1)] 
       AS ids 
ORDER BY length(ids) DESC 
LIMIT 10

Collections
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MATCH (:Country {name:"Sweden"}) 
      <-[:REGISTERED_IN]-(c:Company) 
      <-[:WORKS_AT]-(p:Person:Developer) 
WHERE p.age < 42 
WITH c, count(p) as cnt, 
     collect(p.empId) as emp_ids 
WHERE cnt > 12 
RETURN c.name AS company_name, 
       extract(id2 in 
          filter(id1 in emp_ids  
             WHERE id1 =~ "...-.*")  
       | substr(id2,4,size(id2)-1)] 
       AS last_emp_id_digits 
ORDER BY length(last_emp_id_digits) DESC 
SKIP 5 LIMIT 10

Concrete Example
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CREATE 
creates nodes, relationships 

and patterns
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CREATE (y:Year {year:2014}) 
FOREACH (m IN range(1,12) | 
  CREATE  
   (:Month {month:m})-[:IN]->(y) 
)

CREATE - nodes, rels, structures
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MERGE 
matches or creates
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MERGE (y:Year {year:2014}) 
ON CREATE  
  SET y.created = timestamp() 
FOREACH (m IN range(1,12) | 
  MERGE  
   (:Month {month:m})-[:IN]->(y) 
)

MERGE - get or create
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SET, REMOVE 
update attributes and labels
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MATCH (year:Year) 
WHERE year.year % 4 = 0 OR  
      year.year % 100 <> 0 AND  
        year.year % 400 = 0 
SET year:Leap 
WITH year 
MATCH (year)<-[:IN]-(feb:Month {month:2}) 
SET feb.days = 29 
CREATE (feb)<-[:IN]-(:Day {day:29})

SET, REMOVE, DELETE
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INDEX, 
CONSTRAINTS 

represent optional schema



(c) Neo Technology, Inc 2014

CREATE CONSTRAINT ON (y:Year)  
   ASSERT y.year IS UNIQUE 
!
CREATE INDEX ON :Month(month) 

INDEX / CONSTRAINT
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Graph Query Examples
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Social 
Recommendation
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MATCH (person:Person)-[:IS_FRIEND_OF]->(friend), 
    (friend)-[:LIKES]->(restaurant), 

      (restaurant)-[:LOCATED_IN]->(loc:Location), 
      (restaurant)-[:SERVES]->(type:Cuisine) 
!
WHERE person.name = 'Philip' AND loc.location='New York' AND  
      type.cuisine='Sushi' 
!
RETURN restaurant.name 

* Cypher query language examplehttp://maxdemarzi.com/?s=facebook

http://maxdemarzi.com/?s=facebook
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Network Management 
Example
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Network Management - Create

CREATE !
! (crm {name:"CRM"}),!
! (dbvm {name:"Database VM"}),!
! (www {name:"Public Website"}),!
! (wwwvm {name:"Webserver VM"}),!
! (srv1 {name:"Server 1"}),!
! (san {name:"SAN"}),!
! (srv2 {name:"Server 2"}),!
!
! (crm)-[:DEPENDS_ON]->(dbvm),!
! (dbvm)-[:DEPENDS_ON]->(srv2),!
! (srv2)-[:DEPENDS_ON]->(san),!
! (www)-[:DEPENDS_ON]->(dbvm),!
! (www)-[:DEPENDS_ON]->(wwwvm),!
! (wwwvm)-[:DEPENDS_ON]->(srv1),!
! (srv1)-[:DEPENDS_ON]->(san)!

Practical Cypher 
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Network Management - Impact Analysis

// Server 1 Outage!
MATCH (n)<-[:DEPENDS_ON*]-(upstream)!
WHERE n.name = "Server 1"!
RETURN upstream!

Practical Cypher 

upstream

{name:"Webserver VM"}

{name:"Public Website"}
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Network Management - Dependency Analysis

// Public website dependencies!
MATCH (n)-[:DEPENDS_ON*]->(downstream)!
WHERE n.name = "Public Website"!
RETURN downstream!
!

Practical Cypher 

downstream

{name:"Database VM"}

{name:"Server 2"}

{name:"SAN"}

{name:"Webserver VM"}

{name:"Server 1"}
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Network Management - Statistics

// Most depended on component!
MATCH (n)<-[:DEPENDS_ON*]-(dependent)!
RETURN n, !
count(DISTINCT dependent) !
AS dependents!

ORDER BY dependents DESC!
LIMIT 1

Practical Cypher 

n dependents

{name:"SAN"} 6



(c) Neo Technology, Inc 2014

๏ Full day Neo4j Training & Online Training	



๏ Free e-Books	



• Graph Databases, Neo4j 2.0 (DE)	



๏ neo4j.org	



• http://neo4j.org/develop/modeling	



๏ docs.neo4j.org 	



• Data Modeling Examples	



๏ http://console.neo4j.org	



๏ http://gist.neo4j.org	



๏ Get Neo4j	



• http://neo4j.org/download	



๏ Participate	



• http://groups.google.com/group/neo4j	



How to get started?

78

http://www.neo4j.org/develop/modeling
http://docs.neo4j.org/chunked/milestone/data-modeling-examples.html
http://console.neo4j.org
http://gist.neo4j.org
http://neo4j.org/download
http://groups.google.com/group/neo4j
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Brown 
Bag 

Lunch
By request only!

• you bring 10+ colleagues	


• you provide a room with a projector + screen	



!
• we bring a bag lunch	


• we introduce Neo4j to your team 	



         in 45 min + 15 min for Q&A

Schedule your Neo4j Intro now!

http://neotechnology.com/brownbag

http://neotechnology.com/brownbag
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Thank You
Time for Questions!


