
(c) Neo Technology, Inc 2014

Graph Database
Introduction

Meetup	

Juni 2014

Michael Hunger
michael@neotechnology.com

@mesirii
@neo4j

mailto:michael@neotechnology.com?subject=

(c) Neo Technology, Inc 2014

Agenda

1. Why Graphs, Why Now?	

2. What Is A Graph, Anyway?	

3. Graphs In The Real World	

4. The Graph Landscape	

i) Popular Graph Models	

ii) Graph Databases	

iii)Graph Compute Engines

(c) Neo Technology, Inc 2014

Why Graphs?

(c) Neo Technology, Inc 2014

The World is a Graph

(c) Neo Technology, Inc 2014

Some Use-Cases

(c) Neo Technology, Inc 2014

Social	
 Network

(c) Neo Technology, Inc 2014

(Network)	
 Impact	
 Analysis

(c) Neo Technology, Inc 2014

Route	
 Finding

(c) Neo Technology, Inc 2014

Recommenda<ons

(c) Neo Technology, Inc 2014

Logis<cs

(c) Neo Technology, Inc 2014

Access	
 Control

(c) Neo Technology, Inc 2014

Fraud	
 Analysis

(c) Neo Technology, Inc 2014

Securi<es	
 &	
 Debt

(c) Neo Technology, Inc 2014

What Is A Graph,
Anyway?

(c) Neo Technology, Inc 2014

A	
 Graph
Node

Relationship

(c) Neo Technology, Inc 2014

Four Graph Model
Building Blocks

(c) Neo Technology, Inc 2014

Property	
 Graph	
 Data	
 Model

(c) Neo Technology, Inc 2014

Nodes

(c) Neo Technology, Inc 2014

Rela<onships

(c) Neo Technology, Inc 2014

Rela<onships	
 (con<nued)

Nodes	
 can	
 have	
 more	

than	
 one	
 rela<onship

Self	
 rela<onships	
 are	
 allowed

Nodes	
 can	
 be	
 connected	
 by	
 more	

than	
 one	
 rela<onship

(c) Neo Technology, Inc 2014

Labels

(c) Neo Technology, Inc 2014

Four	
 Building	
 Blocks
๏ Nodes	

• En<<es	

๏ Rela<onships	

• Connect	
 en<<es	
 and	
 structure	
 domain	

๏ Proper<es	

• AJributes	
 and	
 metadata	

๏ Labels	

• Group	
 nodes	
 by	
 role

(c) Neo Technology, Inc 2014

Whiteboard	

Friendlyness

Easy to design and model	

direct representation of the model

(c) Neo Technology, Inc 2014

(c) Neo Technology, Inc 2014

Tom Hanks Hugo Weaving

Cloud Atlas
The Matrix

Lana
Wachowski

ACTED_IN

ACTED_IN
ACTED_IN

DIRECTED

DIRECTED

(c) Neo Technology, Inc 2014

name: Tom Hanks
born: 1956

title: Cloud Atlas
released: 2012

title: The Matrix
released: 1999

name: Lana Wachowski
born: 1965

ACTED_IN
roles: Zachry

ACTED_IN
roles: Bill Smoke

DIRECTED

DIRECTED

ACTED_IN
roles: Agent Smith

name: Hugo Weaving
born: 1960

Person

Movie

Movie

Person Director

ActorPerson Actor

(c) Neo Technology, Inc 2014

(c) Neo Technology, Inc 2014

Aggregate vs.
Connected Data-Model

(c) Neo Technology, Inc 2014

What is NOSQL?

It’s not “No to SQL”

It’s not “Never SQL”

It’s “Not Only SQL”

NOSQL \no-seek-wool\ n. Describes ongoing
trend where developers increasingly opt for
non-relational databases to help solve their
problems, in an effort to use the right tool for
the right job.

(c) Neo Technology, Inc 2014

NOSQL

Relational
Graph

Document

KeyValue

Riak

Column
oriented

Redis

Cassandra

Mongo

Couch

Neo4j

MySQL Postgres

NOSQL Databases

(c) Neo Technology, Inc 2014

31

(c) Neo Technology, Inc 2014

31

Living in a NOSQL World

(c) Neo Technology, Inc 2014

31

Living in a NOSQL World

Volume ~= Size

(c) Neo Technology, Inc 2014

31

Living in a NOSQL World
D

en
si

ty
 ~

=
 C

om
pl

ex
ity

Volume ~= Size

(c) Neo Technology, Inc 2014

31

Living in a NOSQL World
D

en
si

ty
 ~

=
 C

om
pl

ex
ity

Volume ~= Size

Key-Value

Store

(c) Neo Technology, Inc 2014

31

Living in a NOSQL World
D

en
si

ty
 ~

=
 C

om
pl

ex
ity

Column

Family

Volume ~= Size

Key-Value

Store

(c) Neo Technology, Inc 2014

31

Living in a NOSQL World
D

en
si

ty
 ~

=
 C

om
pl

ex
ity

Column

Family

Volume ~= Size

Key-Value

Store

Document

Databases

(c) Neo Technology, Inc 2014

31

Living in a NOSQL World

RDBMS

D
en

si
ty

 ~
=

 C
om

pl
ex

ity

Column

Family

Volume ~= Size

Key-Value

Store

Document

Databases

(c) Neo Technology, Inc 2014

31

Living in a NOSQL World

RDBMS

D
en

si
ty

 ~
=

 C
om

pl
ex

ity

Column

Family

Volume ~= Size

Key-Value

Store

Document

Databases

Graph

Databases

(c) Neo Technology, Inc 2014

31

Living in a NOSQL World

RDBMS

D
en

si
ty

 ~
=

 C
om

pl
ex

ity

Column

Family

Volume ~= Size

Key-Value

Store

Document

Databases

Graph

Databases

90%

of

use

cases

(c) Neo Technology, Inc 2014

31

Living in a NOSQL World

RDBMS

D
en

si
ty

 ~
=

 C
om

pl
ex

ity

Column

Family

Volume ~= Size

Key-Value

Store

Document

Databases

Graph

Databases

90%

of

use

cases

(c) Neo Technology, Inc 2014

31

Living in a NOSQL World

Aggregate Oriented

RDBMS

D
en

si
ty

 ~
=

 C
om

pl
ex

ity

Column

Family

Volume ~= Size

Key-Value

Store

Document

Databases

Graph

Databases

90%

of

use

cases

(c) Neo Technology, Inc 2014

“There is a significant downside - the whole approach works
really well when data access is aligned with the aggregates, but
what if you want to look at the data in a different way? Order
entry naturally stores orders as aggregates, but analyzing
product sales cuts across the aggregate structure. The
advantage of not using an aggregate structure in the database
is that it allows you to slice and dice your data different ways
for different audiences.
!
This is why aggregate-oriented stores talk so much about map-
reduce.”

Martin Fowler

Aggregate Oriented Model

http://martinfowler.com/bliki/AggregateOrientedDatabase.html

(c) Neo Technology, Inc 2014

The connected data model is based on fine grained elements
that are richly connected, the emphasis is on extracting many

dimensions and attributes as elements.
Connections are cheap and can be used not only for the

domain-level relationships but also for additional structures
that allow efficient access for different use-cases. The fine

grained model requires a external scope for mutating
operations that ensures Atomicity, Consistency, Isolation and

Durability - ACID also known as Transactions.
!

Michael Hunger

Connected Data Model

(c) Neo Technology, Inc 2014

Relational vs. Graph

34

(c) Neo Technology, Inc 2014

Relational vs. Graph
You know relational

34

(c) Neo Technology, Inc 2014

Relational vs. Graph
You know relational

34

(c) Neo Technology, Inc 2014

Relational vs. Graph
You know relational

34

users

(c) Neo Technology, Inc 2014

Relational vs. Graph
You know relational

34

users skills

(c) Neo Technology, Inc 2014

Relational vs. Graph
You know relational

34

users skillsuser_skill

(c) Neo Technology, Inc 2014

Relational vs. Graph
You know relational

34

users skillsuser_skill

(c) Neo Technology, Inc 2014

Relational vs. Graph
You know relational

34

users skillsuser_skill

(c) Neo Technology, Inc 2014

Relational vs. Graph
You know relational

34

users skillsuser_skill

(c) Neo Technology, Inc 2014

Relational vs. Graph
You know relational

34

now consider relationships...

(c) Neo Technology, Inc 2014

Relational vs. Graph
You know relational

34

now consider relationships...

(c) Neo Technology, Inc 2014

Relational vs. Graph
You know relational

34

now consider relationships...

(c) Neo Technology, Inc 2014

Relational vs. Graph
You know relational

34

now consider relationships...

(c) Neo Technology, Inc 2014

Relational vs. Graph
You know relational

34

now consider relationships...

(c) Neo Technology, Inc 2014

Relational vs. Graph
You know relational

34

now consider relationships...

(c) Neo Technology, Inc 2014

Relational vs. Graph

34

(c) Neo Technology, Inc 2014

35

(c) Neo Technology, Inc 2014

Looks different, fine. Who cares?

35

(c) Neo Technology, Inc 2014

Looks different, fine. Who cares?

๏a sample social graph

35

(c) Neo Technology, Inc 2014

Looks different, fine. Who cares?

๏a sample social graph

•with ~1,000 persons

35

(c) Neo Technology, Inc 2014

Looks different, fine. Who cares?

๏a sample social graph

•with ~1,000 persons

๏average 50 friends per person

35

(c) Neo Technology, Inc 2014

Looks different, fine. Who cares?

๏a sample social graph

•with ~1,000 persons

๏average 50 friends per person

๏pathExists(a,b) limited to depth 4

35

(c) Neo Technology, Inc 2014

Looks different, fine. Who cares?

๏a sample social graph 	

•with ~1,000 persons	

๏average 50 friends per person	

๏pathExists(a,b) limited to depth 4	

๏caches warmed up to eliminate disk I/O

35

(c) Neo Technology, Inc 2014

Looks different, fine. Who cares?

๏a sample social graph 	

•with ~1,000 persons	

๏average 50 friends per person	

๏pathExists(a,b) limited to depth 4	

๏caches warmed up to eliminate disk I/O

35

persons query time

Relational database 1.000 2000ms

(c) Neo Technology, Inc 2014

Looks different, fine. Who cares?

๏a sample social graph 	

•with ~1,000 persons	

๏average 50 friends per person	

๏pathExists(a,b) limited to depth 4	

๏caches warmed up to eliminate disk I/O

35

persons query time

Relational database 1.000 2000ms

Neo4j 1.000 2ms

(c) Neo Technology, Inc 2014

Looks different, fine. Who cares?

๏a sample social graph 	

•with ~1,000 persons	

๏average 50 friends per person	

๏pathExists(a,b) limited to depth 4	

๏caches warmed up to eliminate disk I/O

35

persons query time

Relational database 1.000 2000ms

Neo4j 1.000 2ms

Neo4j 1.000.000 2ms

(c) Neo Technology, Inc 2014

35

(c) Neo Technology, Inc 2014

Graph Querying

(c) Neo Technology, Inc 2014

You know how to query a
relational database!

(c) Neo Technology, Inc 2014

38

(c) Neo Technology, Inc 2014

Just use SQL

38

(c) Neo Technology, Inc 2014

Just use SQL

38users skillsuser_skills

(c) Neo Technology, Inc 2014

Just use SQL

38users skillsuser_skills

select skills.name
from users join user_skills on (...) join skills on (...)
where users.name = “Michael“

(c) Neo Technology, Inc 2014

How to query a graph?

(c) Neo Technology, Inc 2014

40

(c) Neo Technology, Inc 2014

You traverse the graph

40

(c) Neo Technology, Inc 2014

// find starting nodes
MATCH (me:Person {name:'Andreas'})

Andreas

You traverse the graph

40

(c) Neo Technology, Inc 2014

// find starting nodes
MATCH (me:Person {name:'Andreas'})
// then traverse the relationships
MATCH (me:Person {name:'Andreas'})-[:FRIEND]-(friend)

-[:FRIEND]-(friend2)
RETURN friend2

Andreas

You traverse the graph

40

(c) Neo Technology, Inc 2014

Cypher
a pattern-matching

query language for graphs

(c) Neo Technology, Inc 2014

Cypher attributes

#1 Declarative

You tell Cypher what you
want, not how to get it

42

(c) Neo Technology, Inc 2014

Cypher attributes

#2 Expressive

Optimize syntax for reading

43

MATCH (a:Actor)-[r:ACTS_IN]->(m:Movie)
RETURN a.name, r.role, m.title

(c) Neo Technology, Inc 2014

Cypher attributes

#3 Pattern Matching

Patterns are easy for your
human brain

44

(c) Neo Technology, Inc 2014

Query Structure

(c) Neo Technology, Inc 2014

MATCH (n:Label)-[:REL]->(m:Label)
WHERE n.prop < 42
WITH n, count(m) as cnt, 
 collect(m.attr) as attrs
WHERE cnt > 12
RETURN n.prop,
 extract(a2 in 
 filter(a1 in attrs
 WHERE a1 =~ "...-.*")
 | substr(a2,4,size(a2)-1)]
 AS ids
ORDER BY length(ids) DESC
LIMIT 10

Query Structure

(c) Neo Technology, Inc 2014

MATCH
describes the pattern

(c) Neo Technology, Inc 2014

MATCH (n:Label)-[:REL]->(m:Label)
WHERE n.prop < 42
WITH n, count(m) as cnt, 
 collect(m.attr) as attrs
WHERE cnt > 12
RETURN n.prop,
 extract(a2 in 
 filter(a1 in attrs
 WHERE a1 =~ "...-.*")
 | substr(a2,4,size(a2)-1)]
 AS ids
ORDER BY length(ids) DESC
SKIP 5 LIMIT 10

MATCH - Pattern

(c) Neo Technology, Inc 2014

WHERE
filters the result set

(c) Neo Technology, Inc 2014

MATCH (n:Label)-[:REL]->(m:Label)
WHERE n.prop < 42
WITH n, count(m) as cnt, 
 collect(m.attr) as attrs
WHERE cnt > 12
RETURN n.prop,
 extract(a2 in 
 filter(a1 in attrs
 WHERE a1 =~ "...-.*")
 | substr(a2,4,size(a2)-1)]
 AS ids
ORDER BY length(ids) DESC
SKIP 5 LIMIT 10

WHERE - filter

(c) Neo Technology, Inc 2014

RETURN
returns the result rows

(c) Neo Technology, Inc 2014

MATCH (n:Label)-[:REL]->(m:Label)
WHERE n.prop < 42
WITH n, count(m) as cnt, 
 collect(m.attr) as attrs
WHERE cnt > 12
RETURN n.prop,
 extract(a2 in 
 filter(a1 in attrs
 WHERE a1 =~ "...-.*")
 | substr(a2,4,size(a2)-1)]
 AS ids
ORDER BY length(ids) DESC
SKIP 5 LIMIT 10

RETURN - project

(c) Neo Technology, Inc 2014

ORDER BY	

LIMIT SKIP
sort and paginate

(c) Neo Technology, Inc 2014

MATCH (n:Label)-[:REL]->(m:Label)
WHERE n.prop < 42
WITH n, count(m) as cnt, 
 collect(m.attr) as attrs
WHERE cnt > 12
RETURN n.prop,
 extract(a2 in 
 filter(a1 in attrs
 WHERE a1 =~ "...-.*")
 | substr(a2,4,size(a2)-1)]
 AS ids
ORDER BY length(ids) DESC
SKIP 5 LIMIT 10

ORDER BY LIMIT - Paginate

(c) Neo Technology, Inc 2014

WITH
combines query parts	

like a pipe

(c) Neo Technology, Inc 2014

MATCH (n:Label)-[:REL]->(m:Label)
WHERE n.prop < 42
WITH n, count(m) as cnt, 
 collect(m.attr) as attrs
WHERE cnt > 12
RETURN n.prop,
 extract(a2 in 
 filter(a1 in attrs
 WHERE a1 =~ "...-.*")
 | substr(a2,4,size(a2)-1)]
 AS ids
ORDER BY length(ids) DESC
SKIP 5 LIMIT 10

WITH + WHERE = HAVING

(c) Neo Technology, Inc 2014

Collections
powerful datastructure

handling

(c) Neo Technology, Inc 2014

MATCH (n:Label)-[:REL]->(m:Label)
WHERE n.prop < 42
WITH n, count(m) as cnt, 
 collect(m.attr) as attrs
WHERE cnt > 12
RETURN n.prop,
 extract(a2 in 
 filter(a1 in attrs
 WHERE a1 =~ "...-.*")
 | substr(a2,4,size(a2)-1)]
 AS ids
ORDER BY length(ids) DESC
LIMIT 10

Collections

(c) Neo Technology, Inc 2014

MATCH (:Country {name:"Sweden"})
 <-[:REGISTERED_IN]-(c:Company)
 <-[:WORKS_AT]-(p:Person:Developer)
WHERE p.age < 42
WITH c, count(p) as cnt, 
 collect(p.empId) as emp_ids
WHERE cnt > 12
RETURN c.name AS company_name,
 extract(id2 in 
 filter(id1 in emp_ids
 WHERE id1 =~ "...-.*")
 | substr(id2,4,size(id2)-1)]
 AS last_emp_id_digits
ORDER BY length(last_emp_id_digits) DESC
SKIP 5 LIMIT 10

Concrete Example

(c) Neo Technology, Inc 2014

CREATE
creates nodes, relationships

and patterns

(c) Neo Technology, Inc 2014

CREATE (y:Year {year:2014})
FOREACH (m IN range(1,12) |
 CREATE
 (:Month {month:m})-[:IN]->(y)
)

CREATE - nodes, rels, structures

(c) Neo Technology, Inc 2014

MERGE
matches or creates

(c) Neo Technology, Inc 2014

MERGE (y:Year {year:2014}) 
ON CREATE
 SET y.created = timestamp()
FOREACH (m IN range(1,12) |
 MERGE
 (:Month {month:m})-[:IN]->(y)
)

MERGE - get or create

(c) Neo Technology, Inc 2014

SET, REMOVE
update attributes and labels

(c) Neo Technology, Inc 2014

MATCH (year:Year) 
WHERE year.year % 4 = 0 OR
 year.year % 100 <> 0 AND
 year.year % 400 = 0
SET year:Leap
WITH year
MATCH (year)<-[:IN]-(feb:Month {month:2})
SET feb.days = 29 
CREATE (feb)<-[:IN]-(:Day {day:29})

SET, REMOVE, DELETE

(c) Neo Technology, Inc 2014

INDEX,
CONSTRAINTS

represent optional schema

(c) Neo Technology, Inc 2014

CREATE CONSTRAINT ON (y:Year)
 ASSERT y.year IS UNIQUE
!
CREATE INDEX ON :Month(month)

INDEX / CONSTRAINT

(c) Neo Technology, Inc 2014

Graph Query Examples

(c) Neo Technology, Inc 2014

Social
Recommendation

(c) Neo Technology, Inc 2014

(c) Neo Technology, Inc 2014

(c) Neo Technology, Inc 2014

MATCH (person:Person)-[:IS_FRIEND_OF]->(friend),
 (friend)-[:LIKES]->(restaurant),

 (restaurant)-[:LOCATED_IN]->(loc:Location),
 (restaurant)-[:SERVES]->(type:Cuisine)
!
WHERE person.name = 'Philip' AND loc.location='New York' AND
 type.cuisine='Sushi'
!
RETURN restaurant.name

* Cypher query language examplehttp://maxdemarzi.com/?s=facebook

http://maxdemarzi.com/?s=facebook

(c) Neo Technology, Inc 2014

(c) Neo Technology, Inc 2014

(c) Neo Technology, Inc 2014

Network Management
Example

(c) Neo Technology, Inc 2014

Network Management - Create

CREATE !
! (crm {name:"CRM"}),!
! (dbvm {name:"Database VM"}),!
! (www {name:"Public Website"}),!
! (wwwvm {name:"Webserver VM"}),!
! (srv1 {name:"Server 1"}),!
! (san {name:"SAN"}),!
! (srv2 {name:"Server 2"}),!
!
! (crm)-[:DEPENDS_ON]->(dbvm),!
! (dbvm)-[:DEPENDS_ON]->(srv2),!
! (srv2)-[:DEPENDS_ON]->(san),!
! (www)-[:DEPENDS_ON]->(dbvm),!
! (www)-[:DEPENDS_ON]->(wwwvm),!
! (wwwvm)-[:DEPENDS_ON]->(srv1),!
! (srv1)-[:DEPENDS_ON]->(san)!

Practical Cypher

(c) Neo Technology, Inc 2014

Network Management - Impact Analysis

// Server 1 Outage!
MATCH (n)<-[:DEPENDS_ON*]-(upstream)!
WHERE n.name = "Server 1"!
RETURN upstream!

Practical Cypher

upstream

{name:"Webserver VM"}

{name:"Public Website"}

(c) Neo Technology, Inc 2014

Network Management - Dependency Analysis

// Public website dependencies!
MATCH (n)-[:DEPENDS_ON*]->(downstream)!
WHERE n.name = "Public Website"!
RETURN downstream!
!

Practical Cypher

downstream

{name:"Database VM"}

{name:"Server 2"}

{name:"SAN"}

{name:"Webserver VM"}

{name:"Server 1"}

(c) Neo Technology, Inc 2014

Network Management - Statistics

// Most depended on component!
MATCH (n)<-[:DEPENDS_ON*]-(dependent)!
RETURN n, !
count(DISTINCT dependent) !
AS dependents!

ORDER BY dependents DESC!
LIMIT 1

Practical Cypher

n dependents

{name:"SAN"} 6

(c) Neo Technology, Inc 2014

๏ Full day Neo4j Training & Online Training	

๏ Free e-Books	

• Graph Databases, Neo4j 2.0 (DE)	

๏ neo4j.org	

• http://neo4j.org/develop/modeling	

๏ docs.neo4j.org 	

• Data Modeling Examples	

๏ http://console.neo4j.org	

๏ http://gist.neo4j.org	

๏ Get Neo4j	

• http://neo4j.org/download	

๏ Participate	

• http://groups.google.com/group/neo4j	

How to get started?

78

http://www.neo4j.org/develop/modeling
http://docs.neo4j.org/chunked/milestone/data-modeling-examples.html
http://console.neo4j.org
http://gist.neo4j.org
http://neo4j.org/download
http://groups.google.com/group/neo4j

Neo Technology, Inc Confidential

Brown
Bag

Lunch
By request only!

• you bring 10+ colleagues	

• you provide a room with a projector + screen	

!
• we bring a bag lunch	

• we introduce Neo4j to your team 	

 in 45 min + 15 min for Q&A

Schedule your Neo4j Intro now!

http://neotechnology.com/brownbag

http://neotechnology.com/brownbag

(c) Neo Technology, Inc 2014

Thank You
Time for Questions!

